Fine-mapping of a QTL for nonhost resistance to *Blumeria graminis* f. sp. *tritici* in barley

Cynara Romero, Reza Aghnoum, Rients Niks
Outline of presentation

- Introduction
- Material and Methods
 - Development of fine-mapping population
 - Recombinants screening
- Results
 - Fine-mapping to a region of 0.2cM
 - Synteny with *Brachypodium* and rice
 - Candidate genes
- Future prospects
Acknowledgements

Rients Niks
Yajun Wang
Reza Aghnoum
Anton Vels
Nick Alberts
Marinka Annot
Richard Visser
Introduction

What are we interested in?
Genes responsible for the nonhost status of a plant species to a non-adapted pathogen

How to study this?
Barley-rust model system – “near nonhost”

- **SusPtrit**: experimental barley line with increased susceptibility to several heterologous rusts
 - Also increased susceptibility to non-adapted powdery mildews (*Blumeria graminis* f. spp.)
Nonhost resistance of barley to *Bgt*

RIL mapping population:

\[\text{Vada} \times \text{SusPtrit} \]

(VxS Jafary *et al.*, 2006)

- Screened at seedling stage for susceptibility to the wheat powdery mildew:

Blumeria graminis f. sp. *tritici* (*Bgt*)

Barley powdery mildew (*B. graminis* f. sp. *hordei*)
Nonhost resistance of barley to *Bgt*

- **Phenotyping**
 - Macroscopically: micro-colonies (scale 0-5)
 - Microscopically: haustorium formation
- **Quantitative, polygenic inheritance**
- **QTL mapping**
 - Large effect QTL on 5H:
 - *Rbgtq1*

Vada as donor of resistance allele

LOD 19.9
Explained phenotypic effect:
> 40%
“*Rbgtq1*”
Development of a fine-mapping population

VxS: 152 RILs

- RILs with the highest scores
- RILs with the lowest scores

Crossings to develop fine-mapping populations
F₂ recombinants screening

- **370** F₂ seedlings sampled: genotyping by KASPar assay (outsourcing lab)
 (September 2014)

- **90** heterozygous recombinants

Set seeds:

F₃ RECOMBINANTS

Chr 5H

First genotyping screen

- Marker +33
 - 4.2 cM

- Marker +16
 - 4.4 cM

- Marker -6
 - 6.8 cM

- Marker -49

LOD -1: 5.4 cM region

Peak marker
F₃ recombinants screening

1st round of fine-mapping (180 F₃ plants)
(January 2015)

Genotyped by LightScanner® technology
(high-resolution melting analysis)

Chr 5H

First genotyping screen

1st round of fine-mapping
(180 F₃ plants)
(January 2015)

LOD -1: 5.4 cM region

Marker -49

Marker -6

Marker +16

Marker +33

Peak marker

Peak marker

Rbgtq1 is located between markers -6 and -49
F₃ recombinants screening

New markers developed

LOD -1: 5.4 cM region
New markers for *Rbgtq1*

- DNA from F₃ plants was tested with new markers in between M-6 and M-49;

- One “special” plant (*1_1.35*):

 Score: 2.5
 Resistant phenotype
Attention focused in the region between markers “A” and “F”

More markers developed

2nd and 3rd rounds of fine-mapping on a total of 358 F₃ plants
F$_3$ recombinants screening

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>VV</td>
<td>VV</td>
<td>VV</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
</tr>
</tbody>
</table>

line 1_1

Average of scores for the progeny of line 1_1

- **Rbg$tq1** is to the “right” of marker A

line 2_13

Average of scores for the progeny of line 2_13

- **Rbg$tq1** is not between markers E and F

line 3_15

Average of scores for the progeny of line 3_15

- **Rbg$tq1** is not in the region between markers D and F

Resistance allele: dominant
F₃ recombinants screening

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>SS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV</td>
<td>VV</td>
<td>VV</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
</tr>
</tbody>
</table>

Average of scores for the progeny of line 1_1

- SS: 4.6
- HH: 2.8
- VV: 2.7

Average of scores for the progeny of line 2_13

- SS: 4.3
- HH: 2.5
- VV: 2.8

Average of scores for the progeny of line 3_15

- SS: 0.18
- HH: 0.24
- VV: 0.22

Rbg tq1 between markers A and D!
F₃ recombinants screening

<table>
<thead>
<tr>
<th>GENOTYPE</th>
<th>PHENOTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6_7.29</td>
<td>ss</td>
</tr>
<tr>
<td>6_7.30</td>
<td>ss</td>
</tr>
<tr>
<td>6_7.31</td>
<td>ss</td>
</tr>
</tbody>
</table>

Rbgtdq1 is to the “right” of marker B!
Rbg is in a region of 0.2 cM

<table>
<thead>
<tr>
<th>Marker code #</th>
<th>Marker code</th>
<th>Linkage Group</th>
<th>Position Consensus Map (cM)</th>
<th>Position on Morex map (cM)</th>
<th>HOST vs NONHOST</th>
<th>GENERALLY REGULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>+33</td>
<td>Marker +33</td>
<td>5H</td>
<td>133.185</td>
<td>130.347</td>
<td></td>
<td>Blu_Mag</td>
</tr>
<tr>
<td>+16</td>
<td>Marker +6</td>
<td>5H</td>
<td>139.391</td>
<td>135.069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Peak marker</td>
<td>5H</td>
<td>143.164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>Marker -1</td>
<td>5H</td>
<td>143.848</td>
<td>139.097</td>
<td></td>
<td>Pucc</td>
</tr>
<tr>
<td>-6</td>
<td>Marker -6</td>
<td>5H</td>
<td>144.260</td>
<td>139.097</td>
<td></td>
<td>Pucc</td>
</tr>
<tr>
<td>-10</td>
<td>Marker A</td>
<td>5H</td>
<td>144.552</td>
<td>139.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-13</td>
<td>Marker B</td>
<td>5H</td>
<td>144.722</td>
<td>139.097</td>
<td>Blu</td>
<td>Blu_Mag_Pucc</td>
</tr>
<tr>
<td>-14</td>
<td>Marker D</td>
<td>5H</td>
<td>144.874</td>
<td>138.958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td>Marker C</td>
<td>5H</td>
<td>144.874</td>
<td>139.236</td>
<td></td>
<td>Blu</td>
</tr>
<tr>
<td>-19</td>
<td>Marker F</td>
<td>5H</td>
<td>146.780</td>
<td>139.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-24</td>
<td>Marker E</td>
<td>5H</td>
<td>148.628</td>
<td>139.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-34</td>
<td>Marker G</td>
<td>5H</td>
<td>148.831</td>
<td>139.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-42</td>
<td>Marker H</td>
<td>5H</td>
<td>150.668</td>
<td>136.606</td>
<td></td>
<td>Blu</td>
</tr>
<tr>
<td>-49</td>
<td>Marker -49</td>
<td>5H</td>
<td>151.486</td>
<td>143.542</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synteny with *Brachypodium* and rice genomes

“genomes of grass species resemble one another when gene order is considered”

(Poursarebani et al., 2013)
Rice

10 genes between markers B and D

≈ 37.4 kb

Marker B
Protease inhibitor
Protease inhibitor
Protease inhibitor
Acetyltransferase
Acetyltransferase

Marker C
Glutamate dehydrogenase
Ribosomal protein
5'-3'-exonuclease

Marker D

≈ 121.8 kb

Barley

Marker B
Protease inhibitor
Protease inhibitor
Protease inhibitor
Acetyltransferase
Acetyltransferase

Marker C
Acetyltransferase
Acetyltransferase

Marker D

0.2 cM

Rice

28 genes between markers B and D

Brachypodium

extra set of genes: not in barley or rice
To wrap up...

- *Rbgtq1* – resistance in barley to *Bgt*
 - Dominant
 - LOD -1: 5.4 cM region
 - Fine-mapping: 0.2 cM region
 - Physical distance: in rice about 38 kb
Future prospects

- Screening BAC libraries of Vada and SusPtrit to pick out candidate genes
- Candidate gene validation
 - Transient (over)expression and silencing
- Histology studies – inoculation with other forms of *B. graminis*
Thanks for your attention!

Questions?