The link between genotype, phenotype and IMP2.0

Geert Kessell, Bert Evenhuis, Trudy van den Bosch, Marieke Förch and Huub Schepers
Outline

- EU Monitoring versus the target group
- Current use of monitoring information
 - Short update on the NL population 2014
- Future use of monitoring information

- An IPM2.0 control strategy for PLB
 - Host resistance
 - Fungicides
 - *P. infestans* Population Monitoring
Phytophthora infestans monitoring
Data Analysis + Phenotyping
Current use of monitoring (information)

- Analysis of Control problems:
 - (Extreme) weather
 - High primary inoculum
 - Population Changes

- Rapid identification of the culprit when problems occur
 - Blue13
 - Green33
 - New, “Green33 related” clone in the NL

- Population dynamics under a.i. selection pressure

- Population Genetics:
 towards a better understanding P. infestans of population dynamics
P. infestans clonal lines in the Netherlands
Green33 in 2013
Green33 in 2014
The Dutch Population 2014

- Blue13: 44%
- EU1-A1: 1%
- “Others”: 55%
- 2 new clones, implications currently unknown
Future use of Monitoring information

- Early warning
- Geographical (mis)matching a.i.’s and R-genes with the local population for efficient PLB control
- ...

➢ Essential to know the Phenotype behind the genotype
 - Genotyping is “High Throughput” and Quick
 - Phenotyping is Low Throughput and Slow
 - Clonal lines make it easier
 - The “others” group complicates matters
Genotype → Phenotype

Active Ingredients

<table>
<thead>
<tr>
<th></th>
<th>Fluazinam</th>
<th>Metalaxyl</th>
<th>Fluopicolide</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue13</td>
<td>S</td>
<td>R</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Pink6</td>
<td>S</td>
<td>S</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Green33</td>
<td>MR</td>
<td>S</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>EU1-A1</td>
<td>S</td>
<td>S</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Resistance Genes

<table>
<thead>
<tr>
<th></th>
<th>R0</th>
<th>Blb1</th>
<th>Blb2</th>
<th>Blb3</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue13</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Pink6</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Green33</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>EU1-A1</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>...</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Wageningen UR
For quality of life
Lelystad & Valthermond 2010 & 2011
Lesion counts monitoring plots

Valthermond

Lelystad

WAGENINGEN UR
For quality of life
Results

- Valthermond 2011

Fungicide input (full dose rate equivalents) / Infection (%)
Results

Valthermond 2010

Valthermond 2011

Lelystad 2010

Lelystad 2011

Full dose rate equivalents / Severity (%)

End of Season Severity (%)
AMIGA trials 2013 & 2014

- 3 potato cultivars:
 - Desiree (Conventional)
 - A15-031 (Desiree + Vnt1) (GM)
 - Sarpo mira (Conventional)

- 3 Control strategies:
 - No spraying (against PLB)
 - Weekly Spray application
 - IPM 2.0 (DSS + AVR Monitoring info)
AMIGA, Valthermond 2014
Results 2013

Fungicide applications under extreme disease pressure:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Strategy</th>
<th># sprays</th>
<th>TFI</th>
<th>% Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desiree</td>
<td>NoControl</td>
<td>0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>Desiree</td>
<td>WeeklySchedule</td>
<td>12</td>
<td>12</td>
<td>5.01</td>
</tr>
<tr>
<td>Desiree</td>
<td>IPM2.0</td>
<td>11</td>
<td>10.333</td>
<td>5.02</td>
</tr>
<tr>
<td>SarpoMira</td>
<td>NoControl</td>
<td>0</td>
<td>0</td>
<td>1.09</td>
</tr>
<tr>
<td>SarpoMira</td>
<td>WeeklySchedule</td>
<td>12</td>
<td>12</td>
<td>0.00</td>
</tr>
<tr>
<td>SarpoMira</td>
<td>IPM2.0</td>
<td>3</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>A15-31</td>
<td>NoControl</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>A15-31</td>
<td>WeeklySchedule</td>
<td>12</td>
<td>12</td>
<td>0.00</td>
</tr>
<tr>
<td>A15-31</td>
<td>IPM2.0</td>
<td>3</td>
<td>0.75</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Planting date:
- Emergence: 29-6-2013
- Haulm Killing: 25-9-2013
- Length of season: 88 Days
Results 2014

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Treatment</th>
<th>Spray summary</th>
<th>Severity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># Sprays</td>
<td>TFI</td>
</tr>
<tr>
<td>Desiree</td>
<td>Unsprayed</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Desiree</td>
<td>Weekly sprays</td>
<td>14</td>
<td>17.0</td>
</tr>
<tr>
<td>Desiree</td>
<td>IPM 2.0 Advice</td>
<td>14</td>
<td>17.0</td>
</tr>
<tr>
<td>Sarpo Mira</td>
<td>Unsprayed</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sarpo Mira</td>
<td>Weekly sprays</td>
<td>13</td>
<td>13.0</td>
</tr>
<tr>
<td>Sarpo Mira</td>
<td>IPM 2.0 Advice</td>
<td>10</td>
<td>12.0</td>
</tr>
<tr>
<td>A15-31</td>
<td>Unsprayed</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>A15-31</td>
<td>Weekly sprays</td>
<td>13</td>
<td>13.0</td>
</tr>
<tr>
<td>A15-31</td>
<td>IPM 2.0 Advice</td>
<td>5</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Some Conclusions

- For practical application of monitoring information, we need to know the link between genotype and phenotype.
- Monitoring is an essential component of next level PLB control strategies.
- The full potential of IPM in PLB control is not yet realized, ... not even close!
- Ample room for improvement **IF** host resistance is introduced.
Thank you for your attention

7 August 2013