Strategies for integrated deployment of host resistance and fungicides to sustain effective blight control

Alison Lees, David Cooke, Peter Skelsey
James Hutton Institute

Faye Ritchie, Aldwyn Clarke, Neil Paveley
ADAS

Ruairidh Bain
Scotland’s Rural College

Frank van den Bosch, Kevin Carolan
Rothamsted Research
HAPI - HORTICULTURE AND POTATO INITIATIVE

Supporting high-quality industrially relevant research projects on potato and edible horticulture crops
Aim: To maximise durability of effective control by integrated deployment of host resistance and fungicides

Two dynamic interactions

Fungicides
- Introduction of new MOA
- Evolution of insensitivity

Host resistance genes
- Introduction of a new gene
- Evolution of virulence
Integration is believed to increase sustainability

High efficacy
High risk

Partial efficacy
Low risk

Qualitative host resistance
Quantitative host resistance

Single-site MOA
Multi-site MOA
Virulent/resistant strains gain a competitive advantage over existing 'wild-type' strains because they are able to grow more rapidly in the presence of the control measure that they are able to overcome.

However:
A new virulent strain will still be slowed by fungicides, reducing its competitive advantage – hence fungicides may slow down selection for virulence

Similarly, cultivar resistance may slow down selection for fungicide insensitivity
Generic principles

\[sT = (r_R - r_S)T \]

- Rate of evolution of resistance
- Exposure time
- Rate of increase of resistant strain
- Rate of increase of sensitive strain

Strategy 1: Reduce both \(r_R \) and \(r_S \)
Strategy 2: Reduce \(r_R \) relative to \(r_S \)
Strategy 3: Reduce exposure time

84% of published cases agree with prediction
5% disagree
Hypotheses and objectives

- H1: Deployment of crop resistance reduces selection for fungicide insensitivity.
- H2: Deployment of fungicides reduces selection for virulence.
- H3: How crop resistance genes and fungicides are integrated is a key determinant of the durability of control.
4 inter-linked objectives

Test the effect of

1) Host resistance on selection for fungicide insensitivity
2) Fungicide treatments on the selection for virulence
3) Develop a basis for integrated control to constrain pathogen evolutions towards fungicide insensitivity and virulence
4) Develop strategies for durable control using fungicides and cultivar resistance
What did we need? 2013

H1: Deployment of crop resistance reduces selection for fungicide insensitivity.

- Pairs of isolates with similar aggressiveness that have different fungicide sensitivity (metalaxyl)
- Pairs of cultivars with different levels of host resistance (King Edward, Cara)

H2: Deployment of fungicides reduces selection for virulence.

- Pairs of isolates with similar aggressiveness that have different virulences (+/-avr2)
- Pairs of cultivars with different R genes - King Edward (-R2), Pentland Dell (+R2)
<table>
<thead>
<tr>
<th>Isolate</th>
<th>Genotype (unique fingerprint)</th>
<th>Met</th>
<th>Race</th>
<th>Infects P. Dell (R2)?</th>
<th>Infects KE (no R2)?</th>
<th>Aggressiveness (Relative Growth Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>13_A2</td>
<td>R</td>
<td>1,2,3,4,5,6,7,10,11</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>1.25</td>
</tr>
<tr>
<td>H2</td>
<td>13_A2</td>
<td>R</td>
<td>1,2,3,4,5,6,7,10,11</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>*</td>
</tr>
<tr>
<td>H3</td>
<td>13_A2</td>
<td>R</td>
<td>1,2,3,4,5,6,7,10,11</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>1.05</td>
</tr>
<tr>
<td>H4</td>
<td>13_A2</td>
<td>R</td>
<td>1,2,3,4,5,6,7,10,11</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>1.24</td>
</tr>
<tr>
<td>H5</td>
<td>6_A1</td>
<td>S</td>
<td>1,3,4,7,8,10,11</td>
<td>xx</td>
<td>✓ ✓</td>
<td>1.11</td>
</tr>
<tr>
<td>H6</td>
<td>6_A1</td>
<td>S</td>
<td>1,3,4,7,10,11</td>
<td>xx</td>
<td>✓ ✓</td>
<td>0.49</td>
</tr>
<tr>
<td>H7</td>
<td>6_A1</td>
<td>S</td>
<td>1,3,4,7,10,11</td>
<td>xx</td>
<td>✓ ✓</td>
<td>1.25</td>
</tr>
<tr>
<td>H8</td>
<td>6_A1</td>
<td>S</td>
<td>1,3,4,7</td>
<td>xx</td>
<td>✓ ✓</td>
<td>0.75</td>
</tr>
<tr>
<td>H9</td>
<td>8_2_A1</td>
<td>S/l</td>
<td>1,3,4,7,10,11</td>
<td></td>
<td>✓ ✓</td>
<td>0.88</td>
</tr>
<tr>
<td>H10</td>
<td>8_2_A1</td>
<td>(S)</td>
<td>1,3,4,7,11</td>
<td></td>
<td>✓ ✓</td>
<td>1.04</td>
</tr>
<tr>
<td>H11</td>
<td>8_2_A1</td>
<td>R</td>
<td>1,3,4,7,10,11</td>
<td></td>
<td>✓ ✓</td>
<td>0.86</td>
</tr>
<tr>
<td>H12</td>
<td>8_2_A1</td>
<td>S</td>
<td>1,3,4,7,10,11</td>
<td></td>
<td>✓ ✓</td>
<td>1.24</td>
</tr>
</tbody>
</table>
Experimental set-up 2014

- Experiments 1 and 2
- H1: Deployment of partial cultivar resistance to late blight reduces selection for fungicide insensitivity (x 2 exp x 2 sites – Wales (ADAS) and Scotland (SRUC))

<table>
<thead>
<tr>
<th>Variety</th>
<th>KE and Cara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicates</td>
<td>6</td>
</tr>
<tr>
<td>Treatments</td>
<td>6 = 3 fungicide doses: Ridomil Gold 480SL 0, 0.25, 0.5 (relative to g/ha in full dose of Fubol) x 2 varieties: King Edward (3), Cara (5)</td>
</tr>
<tr>
<td>Design</td>
<td>Split plot (variety as sub-plot, fungicide as main plot)</td>
</tr>
<tr>
<td>Inoculation</td>
<td>8 plants inoculated/plot 5 x10^4 sporangia/ml (95:5 met sens: res)</td>
</tr>
<tr>
<td>Sampling</td>
<td>8 Aug, 18 Aug</td>
</tr>
</tbody>
</table>
Foliar blight progress inside (I) and outside (O) inoculated plot area – Exp 1, ADAS

Fungicide applied and first sample taken (8 Aug)

Second sample taken (18 Aug)

Inoculated 18 July 2014

Assessment date

Foliar blight (%) plot area affected

- Cara Untreated (I)
- Cara 0.25 (I)
- Cara 0.5 (I)
- King Edward Untreated (I)
- King Edward 0.25 (I)
- King Edward 0.5 (I)
- Cara Untreated (O)
- Cara 0.25 (O)
- Cara 0.5 (O)
- King Edward Untreated (O)
- King Edward 0.25 (O)
- King Edward 0.5 (O)

Mancozeb over-sprays x 4
Sampling and genotyping

- Experiment 1 (ADAS site)
- Inoculated 18 July
- Sample 1, 8 Aug = At fungicide application
- Sample 2, 18 Aug = 10 days after fungicide application
- 16 sporulating lesions/plot (not from inoculated plants) – FTA cards using Euroblight protocol
- 16 lesions/plot x 6 reps x 6 treatments x 2 dates = 1152 samples/expt
- Genotyped to assess frequency of metalaxyl resistant v sensitive isolates recovered v 95 S : 5 R ratio applied – is there an effect of cultivar resistance?
- Maximum of 96 samples/trt, 774 samples genotyped.
- Fewer samples on date 1 - less disease established on Cara
- 8_A1 established on KE pre-inoculation
- 8_A1 out-competed on Cara
8_A1 ingress

2014 FAB Blight reception early and severe

Moray Taylor - Fera
Testing the hypothesis – preliminary analysis (H1, Exp 1 only)

H1: Deployment of crop resistance reduces selection for fungicide insensitivity.

Growth (units of LAI per 7 days) is calculated from \(\frac{\log \left(\frac{D_2}{D_1} \right)}{t} \),

\(t=7, \ D_2 \) population size at date2, \(D_1 \) population size at date1.

<table>
<thead>
<tr>
<th>Cara (Resistant)</th>
<th>13_A2 growth rate</th>
<th>6_A1 growth rate</th>
<th>13_A2 – 6_A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fungicide</td>
<td>0.187</td>
<td>0.073</td>
<td>0.113</td>
</tr>
<tr>
<td>fungicide</td>
<td>0.175</td>
<td>0.071</td>
<td>0.104</td>
</tr>
<tr>
<td>King Edward (susceptible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No fungicide</td>
<td>0.214</td>
<td>0.008</td>
<td>0.206</td>
</tr>
<tr>
<td>fungicide</td>
<td>0.197</td>
<td>0.064</td>
<td>0.134</td>
</tr>
</tbody>
</table>

- Initial results (1 exp only) confirm the hypothesis, selection for the resistant strain is lower on Cara than King Edward
- Work in progress – 4 expts/hypothesis x 2 hypotheses
- More later...
Acknowledgements

Field and technical staff at ADAS, SRUC, JHI