

Genetic change and cryopreserved seed

Brian Grout

Professor - Havebrugsvidenskab

Frozen storage and genetic stability

- Liquid nitrogen storage reduces water, and other molecular activity, to the practical minimum,-20°C less so
- If viability is preserved then change to the genome (gross damage or mutation) during storage is essentially eliminated in most cases
- Other molecular events, including mobility may compromise viability in some circumstances
- New research is looking towards gene expression & the <u>epigenome</u>

The action of the epigenome – on/off switches

Precise developmental patterns

Blocking gene expression

- A common epigenetic control mechanism
 - methyl groups and proteins block the transcription mechanism so that the information in the gene cannot be used
- Epigenetic action is important in plant development

•An environmental stress e.g. low temperature can result in changes in methylation and protein binding to DNA

•This switches the gene off and alters the pattern of development

•During seed formation the situation resets itself, <u>but</u> <u>there are exceptions</u>

•<u>The significance for seed</u> <u>storage?</u>

Cryopreserving the epigenome in orchid seed

6 DanSeed Symposium marts 2010

The epigenome, cryopreservation and development

Surenciski, M. R., Dematteis, M. & Flachsland, E. A. 2007: Chromosome stability in cryopreserved germplasm of *Cyrtopodium hatschbachii* (Orchidaceae). — *Ann. Bot. Fennici* 44: 287–292.

Cyopreservation & methylation in A. thaliana

Band type	Controls→plants treated without freeze- thawing	Controls→ plants after cryopre- servation	Plants treated with- out freeze-thaw ing→plants after cryopreservation	
$I \rightarrow -$	2	0	2	
$\mathrm{II} \rightarrow -$	1	0	15	
$\mathrm{III} \rightarrow -$	5	4	0	
$- \rightarrow I$	5	5	5	
$- \rightarrow II$	15	1	2	
$- \rightarrow \mathrm{III}$	2	3	2	
$\mathrm{I} \rightarrow \mathrm{II}$	8	6	1	
$\mathrm{II} \to \mathrm{I}$	2	3	3	
$\mathrm{I} \rightarrow \mathrm{III}$	5	6	5	
$\mathrm{III} \to \mathrm{I}$	4	5	5	
$\mathrm{III} \to \mathrm{II}$	1	0	0	
Total	50	33	40	

Wang, et al, Effect of cryopreservation on the development and DNA methylation patterns of *Arabidopsis thaliana* Life Science Journal, Vol 6, No 1, 2009

8 DanSeed Symposium marts 2010

DNA methylation, seed viability & embryo development

Self-Pollinated	Genetic Cross		Abnormal F1 Embryos ^a	
	Female	Male	%	п
Wild type			0	967
met1-6/met1-6	Arabidopsis		33	568
cmt3-7/cmt3-7			3	578
MET1/met1-6			10	562
cmt3-7/cmt3-7			23	816
MET1/met1-6				
	met1-6/met1-6	Wild type	16	550
	Wild type	met1-6/met1-6	8	822
	MET1/met1-6	Wild type	8	420
	Wild type	MET1/met1-6	5	403

Wenyan Xiao, Kendra D. Custard, Roy C. Brown, Betty E. Lemmon, John J. Harada, Robert B. Goldberg, and Robert L. Fischer **DNA Methylation Is Critical for** *Arabidopsis* **Embryogenesis and Seed Viability** Plant Cell 18: 805-814, 2006

Implications for seed storage

Conventionally:

- Epigenetic change may affect developmental process e.g. rooting and flowering
- Preserving the epigenetic status is necessary to preserve typical development
- In seeds and tissue culture (meristems), cryopreservation should preserve the epigenetic status

Innovatively

- Epigenetic changes can be inherited via seed and can confer performance advantages on (at least) the next generation
- Epigenetic priming
- Cryopreservation must be able to preserve this epigenetic condition

Arabidopsis seed production under water stress

www.sysbio.uzh.ch

www.mdpi.com

Heritable water stress* responses in A. thaliana

control

stressed

Increased seed size

Fewer, smaller leaves with an increased stomatal density –greater control over water relations No significant reduction in absolute growth rate

 $(*0.35gH_2O/g dry soil - 50\%)$

Heritable epigenetic response to water stress in A. thaliana

Electrolyte leakage from osmotically stressed leaf discs

Epigenetics and cryopreservation

- Epigenetic priming may give seed crops a growth, development and/or survival advantage where re-occurring environmental stresses are expected
- The parent line has to be grown under conditions of controlled stress
- Frozen seed storage must not disrupt the pattern of methylation/epigenetic regulation
- Epigenetic stability should become a part of routine analysis to confirm successful frozen seed storage

I would be pleased to send a copy of this presentation to your e-mail address

15 DanSeed Symposium marts 2010