

SeedGard AB

- Cerall
- Cedomon

ThermoSeed – SeedGard

Gustaf Forsberg

Sales

R & D

The modern solution

Free from chemicals

Commercial status

- In use on Swedish farms since 2002
- First full-scale system sold and licensed to Svenska Lantmännen for use on cereal seed
- More contracts under negotiation
- Several evaluations have shown very good potential for use on vegetable seed

Facts

- In commercial operation at 15 tons/h
- Effects equivalent to chemicals
- Cost-competitive with chemicals
- Approved by the Swedish Seed
 Testing and Certification Institute, SUK
- Up-scaled to over 200 tons per day

The principle

Characteristics

- Outstanding precision
- High throughput process
- Low cost competes with chemical treatment
- "Pasteurization"
 treatment using hot, humid air
- Advanced process control technology
- Reliable

 highest quality control

The quality system

Evaluation

Evaluation methods

Highly infected seed Field tests

- plant emergence
- pathogenic symptoms
- yield

Covering climatic and geographic variations Laboratory and greenhouse tests

Effects

1: Non-cereal crops

Thermo eed Effects non-cereals, summary

Crop	Pathogen	Disease control ¹⁾	Yield effect	Kind of test
Cabbage	Alternaria brassicicola			Greenhouse
		II		Field
	Xanthomonas campestris	III		Laboratory
		III		Greenhouse
Carrot	Alternaria radicina	II		Laboratory
	Alternaria dauci	II		_"_
	Alternaria spp.	C+		Field
	Xanthomonas campestris pv. carotae	II		Greenhouse
Lamb's lettuce	Phoma valerianellae	II		_"_
Onion	Botrytis aclada	III		Laboratory
	Stemphylium	II		-"-
Parsley	Septoria petroselini	C+	C+	Field
Spinach	Verticillium spp.	II		Laboratory
	Cladosporium	II		-"-
	Stemphylium	II		_"_
	Alternaria	II		-"-
	Fusarium	II		_"_
Tomato	Pseudomonas syringae pv. tomato	$III^{2)}$		Greenhouse
	Xanthomonas campestris pv.	$III^{2)}$		_"_
	vesicatoria .			
Pea	Ascochyta pisi	II		Laboratory
Bean	Colletotrichum lindemuthianum	III		Field
Red clover	Phoma medicaginis var. pinodella	C+	C+	_"_
Rice	Magnaporthe grisea	С	С	_"_
	Cochliobolus miyabeanus	С	С	_"_
	Gibberella fujikuroi	С	С	-"-

I Better than untreated

II Good effect

III Complete eradication

When compared with chemical treatment:

C Equivalent with chemical treatment

C+ Better than chemical treatment

¹⁾With no negative effect on germination or emergence

²⁾ Very low control infection

STOVE project

"Seed Treatment for Organic Vegetable Production"

- Evaluations in lab, greenhouse and field 2003-2006
- Evaluated methods:
 - » ThermoSeed
 - » Chemicals (Thiram and more)
 - » Hot water
 - » Electron beam "E-Ventus"
 - » Various bacteria
 - » Plant extracts

STOVE project

Outline of the conclusions:

"Aerated steam* appeared to be the most effective method, but hot water and electron seed treatment may still be similarly effective if they are more optimised".

*ThermoSeed label in the project

Effects

2: Cereal crops

Effects in cereals, summary

Crop	Pathogen		Effects
Wheat	Tilletia caries	(common bunt)	+
(spring	Stagonospora nodorum	(leaf and glume blotch)	+
winter)	Ustilago tritici	(loose smut)	_
•	Fusarium spp.		+
	Fusarium nivale	(snow mold)	+
	Fusarium culmorum		+
Barley	Drechslera graminea	(leaf stripe)	+
_	Drechslera teres	(net blotch)	+
	Bipolaris sorokiniana		+
	Fusarium spp.		+
	Ustilago nuda	(loose smut)	_
	Ustilago hordei	(covered smut)	+
Oats	Drechslera avenae	(leaf spot)	+
	Ustilago avenae	(loose smut)	+
Rice	Magnaporthe grisea		+
	Cochliobolus miyabeanus		+
	Gibberella fujikuroi		+

Example: Fusarium spp.

Method approval

Evaluation by SUK

- the Swedish Seed Testing and Certification Institute (part of the Board of Agriculture

ThermoSeed approved

 as an equivalently effective alternative to chemical seed treatment

Lantmännen

Yield wheat, 41 field tests 2003-04

Yield barley, 24 field trials 2003-04

*Imazalil 10 g/l, guazatine 150 g/l

SLU:s seed treatment evaluation

Lars Wik, SLU

- Field tests at four locations 2005-07
- Comparisons between different products
- Wheat and barley

⇒ ThermoSeed is in the top

both concerning effect and yield

Seed Treatment against net blotch in barley

Official field trials during 3 years (SLU R11-4010)

Treatment effects in commercial operation 2006-07

- Barley
- Wheat
- Rye
- Triticale

- ⇒Effects confirmed
- ⇒Farmers very satisfied

Lantmännen

Thermo eed The Lantmännen plant in Skara

Lantmännen

LIFE environment award to ThermoSeed, by the EU Commission:

"Best of the Best"

of the over 100 projects finished during 2005-06

Lantmännen's choice:

- •Create a new focus on seeds
- •Use the unique technology advantages to win market shares

ThermoSeed benefits

Powerful and practical

Effects

equivalent to chemical seed dressing

Broad spectrum Conventional form

Conventional farming

- alternative to chemical seed treatment

Organic farming

- seed pathogens can now be controlled

No additives

leftover seed has an alternative value

Economic

ThermoSeed competes with chemicals also by a low treatment cost

Promoting environment and health

Environmentally friendly Working environment improvement

 considerable for farmers and seed industry workers

No risks with treated seeds

- groundwater
- eco-systems
- humans
- animals
- etc.

Supporting consumers concern

Environmental awareness increasing among consumers
Mercury treatment experience, the fear remains
Goodwill is gained from reduction of pesticides

<u>Legislation</u>

Facilitated establishment on new markets - no tests required to prove harmlessness

Lists with risk chemicals are implemented by National/EU authorities

Increased costs for development and use of chemicals due to new legislation policies

Other advantages

- Seed dormancy breaking
- Leftover seed good as food or feed
- Leftover seed no costs for destruction
- Grain storage insects effective control
- Bulk seed facilitated for low logistics costs

Conclusion

ThermoSeed

is an <u>attractive alternative</u> to chemical seed treatment

Next step?

International expansion on field crop markets

 Now evaluating the potential for <u>horticultural</u> <u>market introduction</u>

