Seed Science and Technology

Seed Treatments for Improved

Tolerance to Biotic and Abiotic stress

DanSeed, March 19, 2019

Dr. Alan Taylor, agt1@cornell.edu
Cornell AgriTech, New York

Global Ag Chemical Industry

Companies with Seed Treatment divisions

- Bayer CropScience
- Syngenta
- BASF
- Monsanto
- Dow Agro Sciences
- Dupont
- FMC

Recent Mergers and Acquisitions in the Global Ag Chemical Industry Seed Treatment value US\$ +4 Billion

- Bayer CropScience + Monsanto now Bayer
- Syngenta bought by ChemChina
- Dow + Dupont now Corteva
- BASF
- FMC

Divesting Bayer Seed Treatments to BASF as a result of merger with Monsanto

- Poncho (clothianidin) products including Poncho /
 Votivo. The major corn seed treatment in the US.
- ILeVO that contains the fungicide fluopyram used on soybeans for nematodes and Fusarium virguliforme, causal pathogen of Sudden Death Syndrome (SDS)

Global Biological Seed Treatment Trends

- The global biological seed treatment market is US\$700 million in 2017 and is projected to reach more than US\$1.2 billion by 2022.
 CGAR 11%
- Biologicals and Botanicals (fermentation products, natural polymers and derivatives)
- Biopesticides, Biostimulants, Biofertilizers

https://www.marketsandmarkets.com/Market-Reports/biological-seed-treatment-market-162422288.html?gclid=Cj0KCQiA5NPjBRDDARIsAM9X1GJ0-lp8T4c6UE5Cyphq1rR_-F0bHoC76_JJFFAbiAUJRMI3S7HfHq8aAswIEALw_wcB

Seed Enhancements - post-harvest methods that improve germination or seedling growth, or facilitate the delivery of seeds and other materials required at the time of sowing (Taylor et al., Seed Science Research,1998)

Seed Coating Technologies

film coating, encrusting, pelleting

Seed Treatments

plant protectants, biostimulants, reduce stress
 Seed coat permeability and Systemic uptake of seed
 treatments

Overview of the Agronomic Life Cycle of Seeds

Seed Production and Harvesting

Seed Conditioning

Seed Enhancements

- seed treatment and coating technologies
- other enhancements

Packaging and Storage

Seed Testing - germination and vigor

Sowing and Crop Production

Seed Treatment and Coating Technologies

Seed Coating Components

<u>Liquid – water based system</u>

- Seed coating binders (adhesives)
- Colorants
- Water to provide uniform coverage

Solid particulates - filler material in coating

- < 100 µm
- Inert materials like talc, diatomaceous earth
- Binders can also be solid particulates
- Active ingredients can be added to liquid or solid particulates
- Components can be synthetic for conventional ag, but must be organic for organic crop production

Seed Coating Technologies

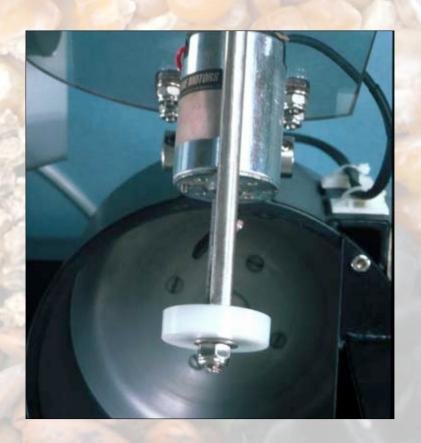
Liquid **Seed Coating Method Solid Particulate** Slurry X Film Coating X **Encrusted** X X X **Pelleting**

Encrusted Seed

Pelleted Seed

Slurry / Film coated

Hemp Seed Treatment and Coating Technologies


Nontreated

Standard coating

New seed coating

Seed Treating and Coating Technology

https://www.youtube.com/watch?v=XIgnpLEJ8MU

Commercial Seed Coating

Seed Treatment Insecticides

- 1. Largest value and growth rate of total seed treatment market, followed by seed trt. fungicides
- 2. Neonicotinoid seed treatments
 - systemic control below and above ground pests
 - major class of insecticides used on a global basis
 - imidacloprid (Gaucho BAY)
 - thiamethoxam (Crusier SYN)
 - clothianidin (Poncho BASF)

Neonicotinoid Seed Treatments

Concerns in the environment and for pest management

- 1. Honey Bee and Other Insect Pollinators
 - implicated in colony collapse disorder
 - dust off from coated seeds from talc and graphite
- 2. Resistance management
 - thiamethoxam is converted to clothianidin in plants
- 3. Need alternate chemistries for efficient early season pest management

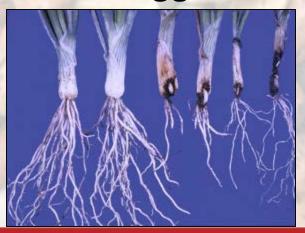
United States IR-4 Program

- Facilitates registration of agrochemicals and biopesticides for specialty crops
- Started seed treatment program in 2005
- Selected crop x pest combinations
- Multi-State participation

Seed Treatment Application Cornell AgriTech – Geneva, NY

IR-4

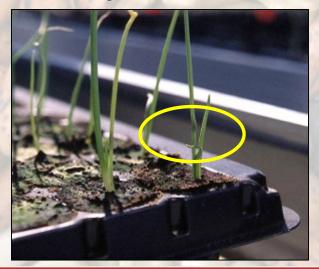
Seed Treatment Industry


Field Efficacy
Univ. Programs

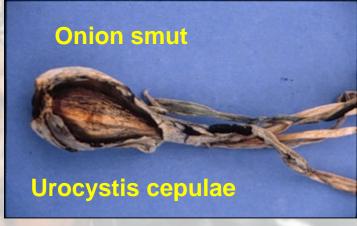
Other Insecticide Seed Treatments

Research at Cornell, IR-4 and other partners – examined spinosad as an insecticide seed treatment

- Spinosad (Dow AgroSciences OMRI approved formulation, Entrust)
- Labeled product is Regard on onion for onion maggot control. Compound is not systemic.


Onion maggot,

Delia antiqua


Brian Nault, Cornell AgriTech

Seed Treatment Fungicides

- Captan and Thiram old chemistry
- Metalaxyl and Mefenoxam (Allegiance BAY and Apron XL – SYN) – first generation new chemistry
- Many new chemistry materials specific target pathogens


M. R. McDonald, U. Guelph

2019 IR-4 Hemp Seed Treatment Fungicide Project

Product name	Actives	Company
Naturall	Three Trichoderma species	ABM
Amplitude	Bacillus amyloliquifaciens	Marrone (MBI)
Regalia	Extract of Reynoutria sachalinensis	Marrone (MBI)
BioSeed	Five species: 3 Bacillus, 1 Paenibacillus, 1 Trichoderma	Ag Biotech
Prudent 44 + Natrosol	Phosphite + Potassium phosphate	LidoChem
Varnimo	Bacillus amyloliquifaciens	LidoChem
Apron XL + Maxim 4FS	Mefenoxam + Fludioxonil	Syngenta

2019 IR-4 Hemp Seed Treatment Fungicide Project – Field Test Locations **NDSU** Cornell **VA Tech** OCEAN @ RAND MINALLY **United States**


Biostimulants as Seed Treatments

Plant biostimulants - broad class of substances and microorganisms that enhance plant growth

Categories of biostimulants:

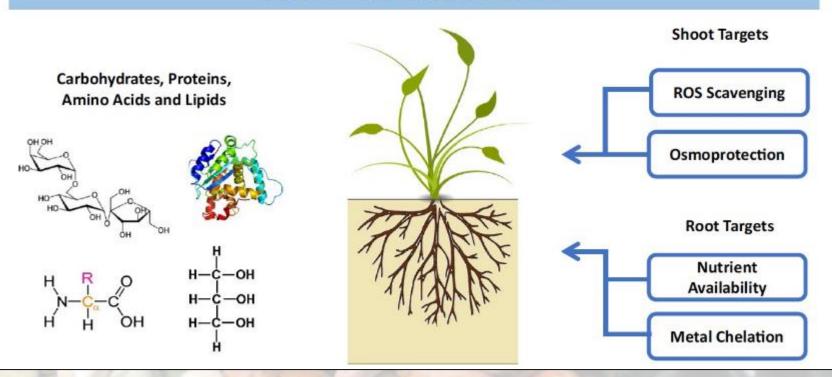
Protein hydrolysates and amino acids

Seed coating: (Animal-based protein-Wilson et al. 2018); (Plant-based protein-Amirkhani et al. 2016)

Seed coating: (Ying Ma et al. (2019) Agronomy 2019, 9, 33)

Humic acid and fulvic acid

Seed treatment: (Harwigsen and Evans (2000) HORTSCIENCE, 35, 1231–1233.


Seaweed extracts

Seed treatment: (Michalak et al. 2017 Appl. Sci.)

Summary of main key mechanisms targeted by carbohydrate-, protein-, amino acid-, and lipid-based biostimulants

KEY MECHANISMS TARGETED BY CARBOHYDRATES, PROTEINS, AMINO ACIDS AND LIPIDS BASED BIOSTIMULANTS

Van Oosten et al. Chem. Biol. Technol. Agric. (2017) 4:5 DOI 10.1186/s40538-017-0089-5

Biostimulant Effect of Soy flour and Micronized Vermicompost Applied as a Seed Coating Blend

Treatments

Control

SF + DE (30:70)

SF + DE (30:70) + CVE liquid

SF+ MVC-1 (30:70)

SF + MVC-2 (30:70)

SF + MVC-3 (30:70)

SF – soy flour, dry binder

DE - diatomaceous earth

CVE – conc. vermicompost extract

Control SF+DE SF+DE+CVE

SF+MVC-1 SF+ MVC-2 SF+ MVC-3

MVC-1 – vermicompost - original

MVC-2 – vermicompost - WormPower

MVC-3 – vermicompost – Terra Vesco

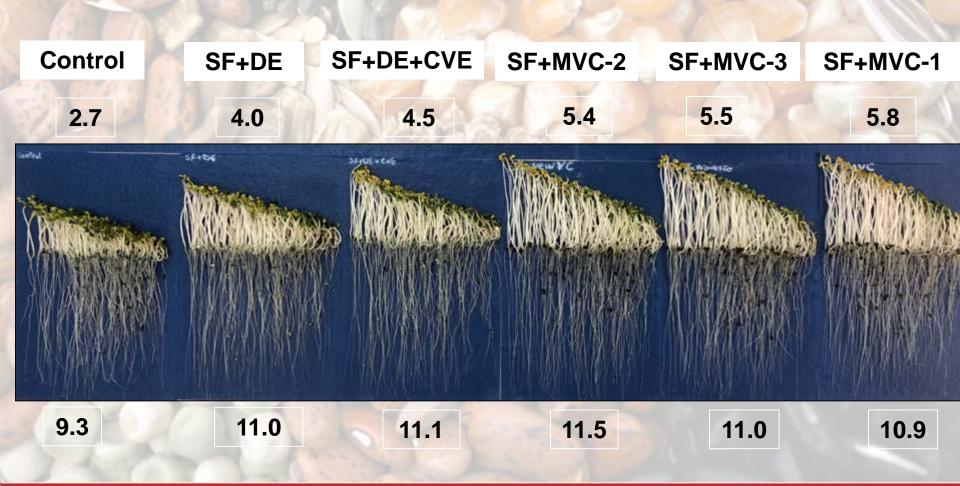
Nitrogen Composition of Seed Coating Materials

Materials	N %	Protein %	NH ₄ μg/g	NO ₃ +NO ₂ μg/g
MVC-1	3.2	6.38	199	6,560
MVC-2	3.6	7.15	93	6,812
MVC-3	2.6	7.17	20	3,442
CVE	-	-	3.4 mg/L	557 mg/L
Soy Flour	8.0	53.0	-	-

Research Question: Do the seed coatings serve as a Nitrogen fertilizer or do they act as a Biostimulant?

Broccoli Germination and Seedlings Growth Characteristics

	Gmax (%)	GU (h)	T50 (h)	Shoot (cm)	Root (cm)	Seedling Vigor Index	Dry weight (g)
Control	98 A	22 A	36 A	2.7 D	9.3 B	11.8 D	0.308 C
SF + DE	97 A	24 A	37 A	4.0 C	11.0 A	14.5 C	0.397 B
SF + DE + CVE	98 A	22 A	36 A	4.5 B	11.1 A	15.3 B	0.380 B
SF + MVC-1	96 A	22 A	36 A	5.8 A	10.9 A	16.0 A	0.440 A
SF + MVC-2	97 A	23 A	36 A	5.4 A	11.5 A	16.4 A	0.420 A
SF + MVC-3	98 A	24 A	36 A	5.5 A	11.0 A	16.2 A	0.420 A


Gmax = Total Germination (%)

GU = Germination Uniformity (h) $[T_{90}-T_{10}]$

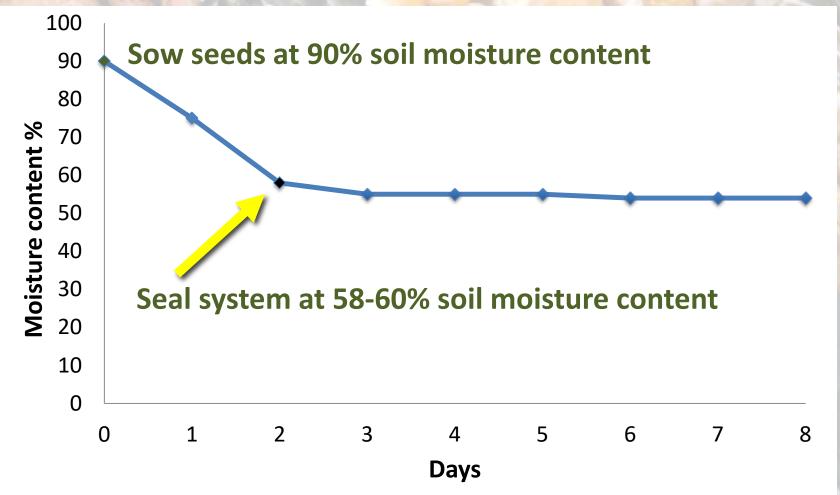
T50 = Time to reach to 50% of germination (h) [Germination rate]

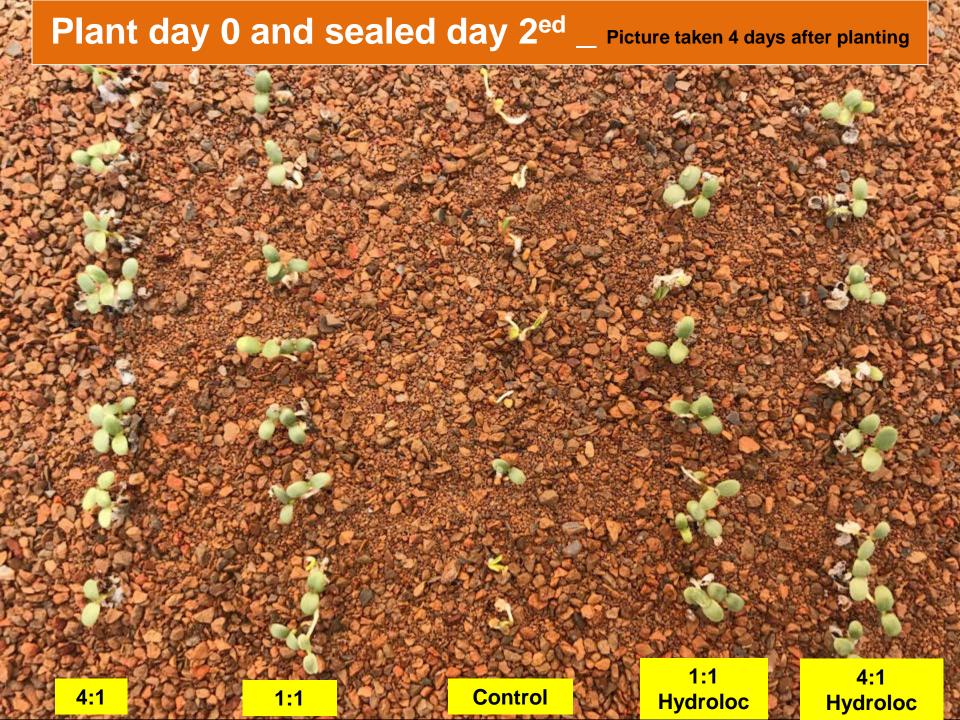
SVI = Gmax/100 ×Seedling length

The second second	Treatment	Shoot Dry Wt (g)	Root Dry Wt (g)	Total Leaf Area (cm²)	% Plants with 6 Leaves	SPAD
	Control	1.27 B	0.539 B	249 B	4 C	50.0 C
	SF+DE	1.82 A	0.714 AB	292 A	68 B	55.4 B
	SF+MVC-2	1.82 A	0.817 A	304 A	84 A	58.0 A

College of Agriculture and Life Sciences

Enhanced nitrogen uptake per plant (30 day old plants), and applied nitrogen per coated seed




Seed Coatings with Hydrophilic additives

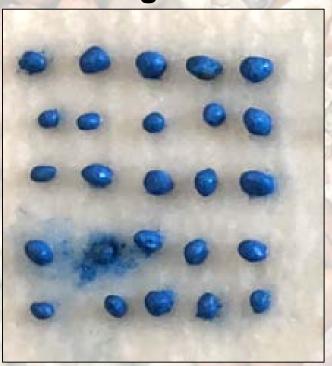
Cover Crop Seed Technology - Red Clover

Greenhouse Test to Simulate Drought Stress after Planting

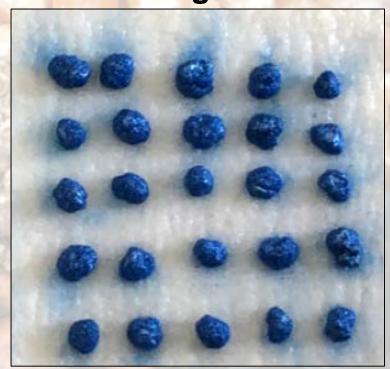
Stockosorb, cross-linked polyacrylate. Absorbs water instantly and makes a clear gel

19% coatings show gel

24% coatings show gel


Bermudagrass Stockosorb

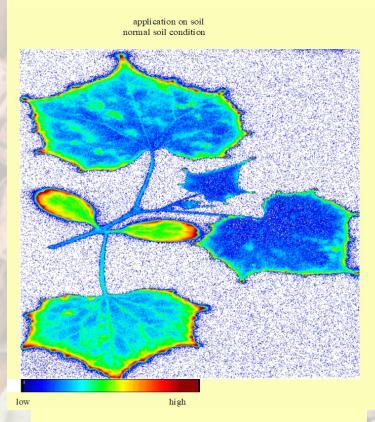
- control



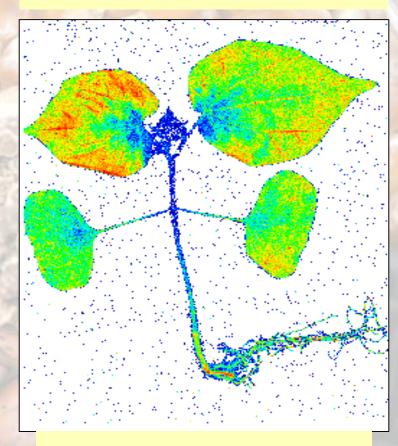
Red Clover Seeds Coated with SAP (Hydrophilic Polymer) less than 325 mesh

Coating control

Coating + SAP



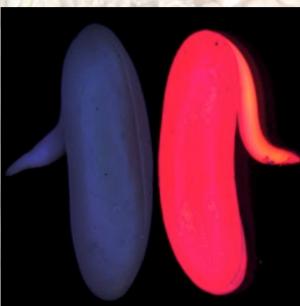
Systemic Seed Treatments for Early Season Pest Management


Systemic Movement in Plants

Labeled thiamethoxam uptake in cucumber leaves

Syngenta

Imidacloprid movement in cotton leaves


Bayer

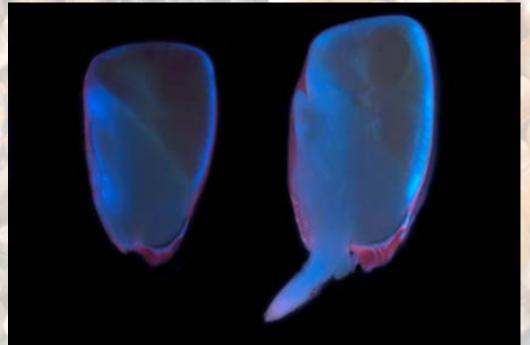
Fluorescent Tracers for Cornell Seed Treatment Uptake Research

Coumarin uptake in soybeans

Rhodamine B uptake in snap beans

Fluorescein blocked in Tomato seed

Soybean (same as Phaseolus)


Coumarin uptake

Both Coumarin 151 (nonionic) and Rhodamine B (ionic) diffuse through the seed coat Permeable Seed Coat Characteristic

Soybean Seeds Treated with Selected Fluorescent Tracers C = Coumarin

Corn, Switchgrass, Onion, Tomato and Pepper Seeds

Only Coumarin diffuses through the seed coat, but Rhodamine does not till the root is emerged -

Selective Permeable Seed Coat Characteristic

Cucumber

Rhodamine staining

Neither Coumarin nor Rhodamine diffuses through the seed coat

Non-Permeable Seed Coat Characteristic

Seed Coat Permeability Characteristics of Selected Crop Seeds

Vegetable Crop Seed	Seed Coat Permeability
Soybean and Snap bean	Permeable
Field and Sweet corn	Selective permeability
Switchgrass	Selective permeability
Onion, Hemp (2018)	Selective permeability
Tomato and Pepper	Selective permeability
Lettuce	Non-permeable
Cucumber	Non-permeable

Salanenka and Taylor, 2009 and 2011 and Dias et al., 2014

Seed Coat Permeability Test Embryo staining results

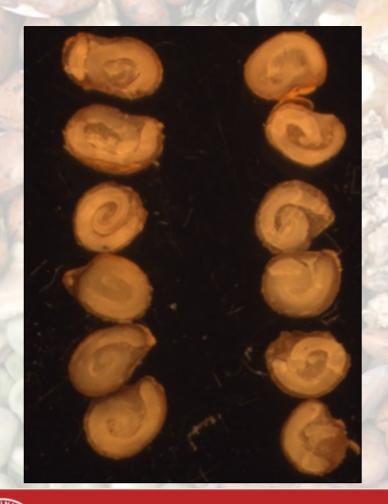
Coumarin (nonionic) Rhodamine B (ionic)

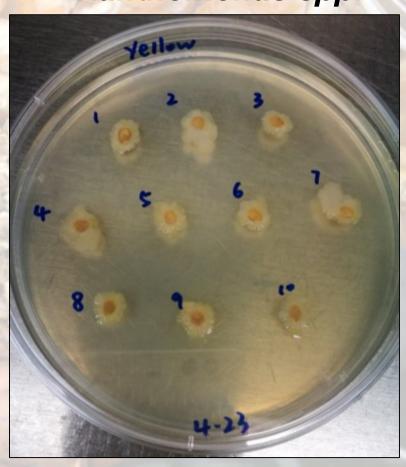
Seed Coat Permeability
Characteristic

+

+

Permeable


+


Selective permeability

Non-permeable

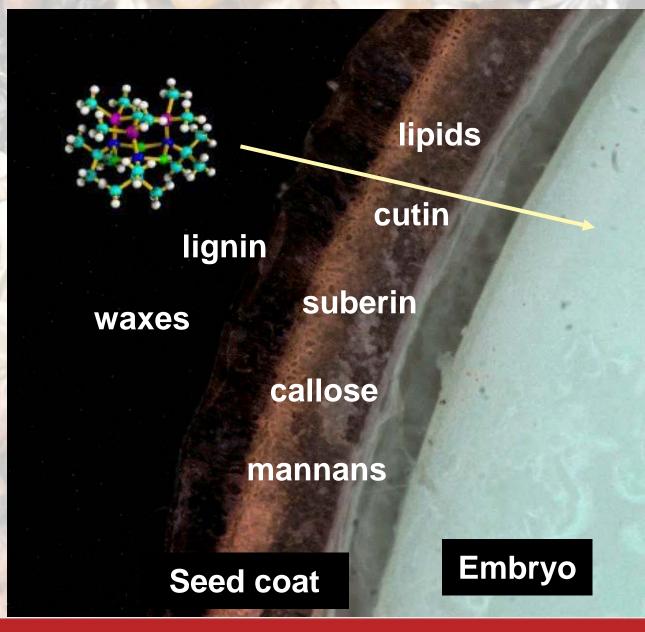
Why Understanding Seed Coat Permeability is Essential – Eradicate Seed-Borne Pathogens

Xanthomonas spp.

The Bigger Story

People have soaked seeds in water containing chemicals for centuries with the goal that these chemicals get into the seed and to the embryo of that seed.

The Bigger Story


People have soaked seeds in water containing chemicals for centuries with the goal that these chemicals get into the seed and to the embryo of that seed.

Conclusion – seed uptake depends on the chemical nature of the compound and the crop seed, whether a chemical will diffuse through the seed coat or be blocked.

Uptake of Seed Treatments

Chemical nature:
Nonionic vs Ionic

Molecular size < 500 MW

Acknowledgements

Dr. Masi Amirkhani, Biostimulant and SAP seed coating

Questions?