MOISTURE ISOTHERM MODELING AND STORAGE BEHAVIOUR OF SEEDS OF CONTRASTING SPECIES

OUTLINE

1 Seed Moisture Content

2 Seed Storage Behaviour

3 Current Research (Methodologies and Results)

4 Conclusions

SEED MOISTURE CONTENT (MC)

- The amount of water in seeds is the most important factor influencing seed quality and storability.
- > A small change in seed MC greatly affects the storage life of seeds.
- ➢ Generally, if the seed MC increases, storage life decreases.
- \succ If seeds are kept at high MC, the losses could be very rapid due to ageing.
- At very low MC (below 4%), seeds may also be damaged due to extreme desiccation or cause hard seeds in some crops.

SEED STORAGE BEHAVIOUR

Low seed moisture content and low temperature

- Reducing seed MC increases longevity in a predictable manner for 90% of species (Roberts 1973).
- Each 1% decrease in seed MC, doubles the life of the seed (Harrington 1972).

SEED STORAGE BEHAVIOUR

Seed longevity is a measure of how long seeds can be stored and remain viable under a given set of conditions

Seed longevity is influenced by:

- 1. Initial Seed Quality
- 2. Species/Variety
- 3. Moisture Content
- 4. Temperature

SEED STORAGE BEHAVIOUR

- For longer periods of storage, dried seeds should be stored at -18°C to -20°C (Hong & Ellis 1996).
- However, commercial seed lots are not dried to such low moisture levels, nor are they always hermetically packaged before being sold to consumers.
- Short-term seed storage (<18 months), is usually in commercial seed warehouses conditioned to 30-35% RH and 15-20°C.

Current study:

Studying moisture isotherm cycles and how sorption behaviour influences longevity

SHABNAM REZAEI PHD STUDENT

DANSEED SYMPOSIUM

7 MARCH 2023

Background:

- The extent of hysteresis has not been systematically characterized across diverse species.
- Is seed eRH or MC more important for determining seed longevity of de- and adsorbing moisture?

<u>Aims:</u>

 \rightarrow To study cycles of moisture desorption and adsorption and their relation to longevity

STUDYING MOISTURE ISOTHERM CYCLES AND HOW SORPTION BEHAVIOUR INFLUENCES LONGEVITY

STUDYING MOISTURE ISOTHERM CYCLES AND HOW SORPTION BEHAVIOUR INFLUENCES LONGEVITY

- Winter oilseed rape
- (Brassica napus var. DK-Exlibris)
- Spring barley
- (Hordeum vulgare var. KWS Irina)

LiCI solution boxes

Hay et al., (2008)

STUDYING MOISTURE ISOTHERM CYCLES AND HOW SORPTION BEHAVIOR INFLUENCES LONGEVITY

How much do seeds need to dry to shift to the adsorption isotherm?

Materials and Methods:

- Winter oilseed rape (*Brassica napus* var. DK-Exlibris)
- Spring barley (Hordeum vulgare var. KWS Irina)

Five cycles, measuring MC and eRH

STUDYING MOISTURE ISOTHERM CYCLES AND HOW SORPTION BEHAVIOUR INFLUENCES LONGEVITY

Materials and Methods: Seed storage experiments

Storing seeds at a high MC and 45°C within sealed aluminium foil packets (limited oxygen).

STUDYING MOISTURE ISOTHERM CYCLES AND HOW SORPTION BEHAVIOR INFLUENCES LONGEVITY

One-step approach takes into account all the data in estimating the constants K and C_W (Hay et al., 2003, 2014).

 $v = \frac{K_i}{10^{(K-C_W \log m)}}$ $Y = 100 \times ((PROB(K_i - X/\sigma) + 1)/2)$ Y=Germination (%) v = viability (NED) 100 X=storage period (days) p = storage period (days)Germination (%) $\sigma = (K - C_W \log m) \text{ s.d.}$ 6 0 Storage period (days) Moisture content (%) DANSEED SYMPOSIUM SHABNAM REZAEI 7 MARCH 2023 PHD STUDENT

RESULTS

Data-analysis are in progress and results will be published as part of PhD-thesis.

CONCLUSIONS

Important to:

1. Assess seed moisture content after seed collection and before seed storage.

2. Consider seed moisture history – whether seeds are desorbing or adsorbing.

3. Consider the differences between seed species for better seed warehouse and seedbank management.

Thanks for your attention!

