

DANSEED 2014

EARLY SEED DEVELOPMENT IN LOLIUM PERENNEL.

SIMON ABEL PH.D. STUDENT

OUTLINE

> Introduction

- > Need for understanding early seed development
- > Defining floret fertility
- > Implications for restricting high yeilding seed crops

> Methods

> Results

SEED DEVELOPMENT

- > Early seed development essential for determining yield
- > Determines floret fertility
- > Many factors can restrict seed development
- > Aim: optimizing yields utilising all possible approaches

FLORET FERTILITY

- > Defined as the success of a floret (flower) to produce a seed
- > Can be further defined to
 - "saleable seed floret fertility",
 - which is the number of floret
 - (flower) that produce "saleable

Adapted from Rolston et., al.

seeds"

FLORET FERTILITY IMPORTANCE

Small increases in floret ferility can significantly increase seed number

		Seeds per m ²		
	Floret Fertility	Billund	Bornholm	Borreby
> 10% increase can	0%	0	0	0
	10%	23118	25353	30282
result in 30.000 seeds	20%	46236	50707	60564
	30%	69353	76060	90845
	40%	92471	101413	121127
per m ²	50%	115589	126766	151409
	60%	138707	152120	181691
> Or 600kg seed / ha	70%	161824	177473	211973
	80%	184942	202826	242254
	90%	208060	228180	272536
	100%	231178	253533	302818

METHODS

- > 3 perennial ryegrass varieties
 - > 2 diploid
 - > 1 tetraploid
- > Placed into controlled environment conditions prior to flowering
 - > 20°C day temperature / 15°C night temperature
- > Florets/flowers recorded when opened
- > Actively pollinated
- > Sampled after pollination and assessed with Videometer lab
- > Seeds were then dried, and weighed

SIMON ABEL

DANSEED 2014

SEED WEIGHT

SEED WEIGHT – STATISTIC GROUPS*

Days after pollination

SEED WEIGHT – FOLLOWING STANDARD

NOVEL ASSESSMENT

- > Following an initial "lag phase", we see rapid seed development (weight)
- > But what is happening during this rapid seed filling?
 - > Physical changes?
 - > Biochemical changes?
 - > Physiological changes?
- > Can we further redefine a "saleable seed"?
- > Future proofing perennial ryegrass seed production
 - > Developing a tool for knowing more about seed development
 - > With the Videometer Lab apparatus

SEED DEVELOPMENT - IMAGING

> New mutli-spectral imaging potential

> Still to be "fully" explained with science

Image removed due to sensitivity

SEED DEVELOPMENT – BUT...

> Can we see similar groupings? Looks very promising

Lag phase	Seed filling	Maturation	
Image remo	ved due to s	ensitivity	

DISCUSSION AND QUESTIONS

- > Need for development of early seed development models in perennial ryegrass
- > Yet what we see follows classic seed development models
- > Only after, can we impose different environmental/ agronomic factors to observe effects of said factors
- > Multi-spectral imaging offer a rapid method for assessing seed development