

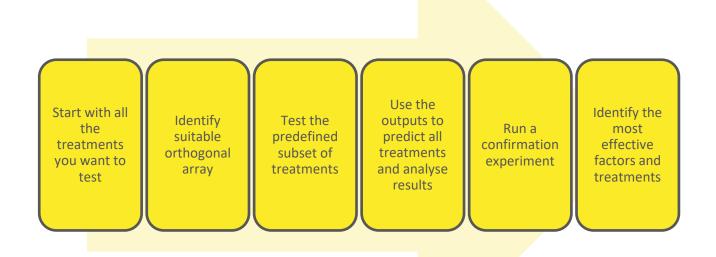
**Faye Ritchie**, Julie Smith and Neil Paveley, ADAS; Laura Sapelli, University of Hertfordshire; Ruairidh Bain, Scotland's Rural College; Alison Lees, The James Hutton Institute; James M. Ritchie, Heriot-Watt University

### Taguchi method – improving precision in engineering

Improve the quality of manufactured goods and processes

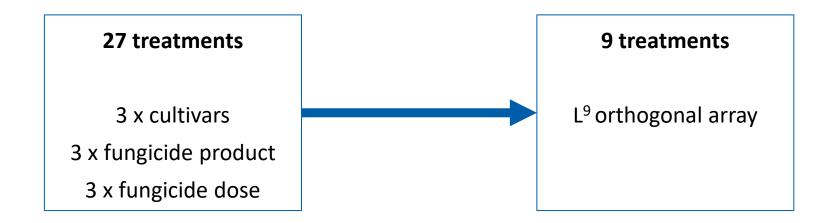
Ronald A. Fisher motivated to understand effect of factors to improve harvested yield.

Genichi Taguchi wanted to reduce variability, cost and minimise the number of experiments.


Is it applicable to agricultural research?






### Using the Taguchi method





## How did we test the Taguchi method





Two existing late blight datasets – same protocol with 27 treatments

## What is an L<sup>9</sup> orthogonal array



| Treatment               | Fungicide product | Cultivar | Fungicide dose |
|-------------------------|-------------------|----------|----------------|
| 1                       | 1                 | 1        | 1              |
| 2                       | 1                 | 2        | 2              |
| 3                       | 1                 | 3        | 3              |
| 4                       | 2                 | 1        | 2              |
| 5                       | 2                 | 2        | 3              |
| 6                       | 2                 | 3        | 1              |
| 7                       | 3                 | 1        | 3              |
| 8                       | 3                 | 2        | 1              |
| <b>9</b><br>21 May 2024 | 3                 | 3        | 2              |

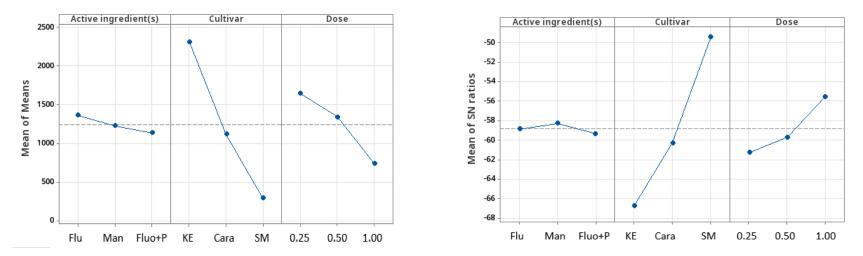
## What is an L<sup>9</sup> orthogonal array



| Treatment | Fungicide product | Cultivar        | Fungicide dose |  |
|-----------|-------------------|-----------------|----------------|--|
| 1         | 1 (Shirlan)       | 1 (King Edward) | 1 (25%)        |  |
| 2         | 1 (Shirlan)       | 2 (Cara)        | 2 (50%)        |  |
| 3         | 1 (Shirlan)       | 3 (Sarpo Mira)  | 3 (100%)       |  |
| 4         | 2 (Revus)         | 1 (King Edward) | 2 (50%)        |  |
| 5         | 2 (Revus)         | 2 (Cara)        | 3 (100%)       |  |
| 6         | 2 (Revus)         | 3 (Sarpo Mira)  | 1 (25%)        |  |
| 7         | 3 (Infinito)      | 1 (King Edward) | 3 (100%)       |  |
| 8         | 3 (Infinito)      | 2 (Cara)        | 1 (25%)        |  |
| <b>9</b>  | 3 (Infinito)      | 3 (Sarpo Mira)  | 2 (50%)        |  |

#### Predicted and observed values – Ceredigion and Ayrshire




| Trt | Observed AUDPC | Predicted AUDPC | Observed AUDPC | Predicted AUDPC |
|-----|----------------|-----------------|----------------|-----------------|
| 1   | 2882           | 2827            | 1033           | 984             |
| 2   | 1733           | 1412            | 270            | 226             |
| 3   | 309            | 684             | 21             | 114             |
| 4   | 2705           | 2385            | 785            | 741             |
| 5   | 964            | 1339            | 116            | 208             |
| 6   | 345            | 290             | 18             | -31             |
| 7   | 1324           | 1699            | 525            | 618             |
| 8   | 658            | 603             | 35             | -14             |
| 9   | 244            | -76             | 17             | -27             |

## Mean of means and signal to noise ratio - Ceredigion

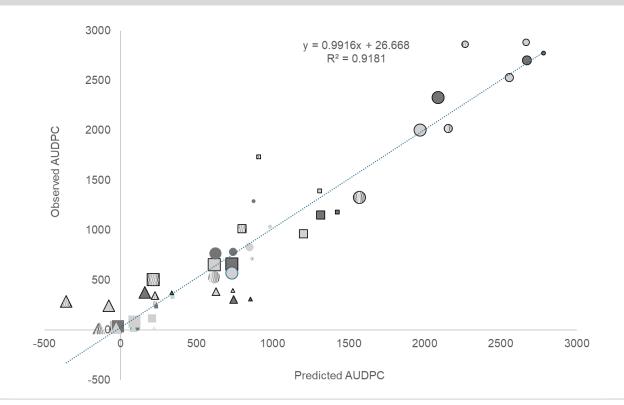


Mean of Means

Signal to noise ratio



The greater the distance between the means for individual factors, the larger the effect the levels had on the mean. The higher, algebraically, the SNR the greater the effect that level had on the treatment.


## ANOVA for Mean of Means - Ceredigion



| Source                | DF | Sum of squares | Mean<br>Squares | F Ratio | P-value | Percentage contribution |
|-----------------------|----|----------------|-----------------|---------|---------|-------------------------|
|                       |    |                |                 |         |         |                         |
| Cultivar              | 2  | 6093128        | 3046564         | 8.26    | 0.108   |                         |
|                       |    |                |                 |         |         | 82.0                    |
| Dose                  | 2  | 1256028        | 628014          | 1.70    | 0.370   | 16.9                    |
| Active                | 2  | 80108          | 40054           | 0.11    | 0.902   |                         |
| ingredient(s)         |    |                |                 |         |         | 1.1                     |
| <b>Residual error</b> | 2  | 737931         | 368965          | -       | -       |                         |
| Total                 | 8  | 8167194        | -               |         |         | 100.0                   |

# Relationship between predicted and observed values – Ayrshire and Ceredigion









- The Taguchi approach can accurately predict the performance of cultivar and fungicidebased integrated disease management strategies.
- Complex strategies can be tested in substantially smaller experiments not just cultivar/fungicide trials has potential in other trials e.g. laboratory.
- Test more treatment combinations than is practical in the field e.g. L<sub>16</sub> = 256 treatment combinations.
- Speed up our understanding of IPM strategies, identify key factors and aid with fine tuning.



www.adas.uk