

SwisensPoleno: Real-time assessment of *P. infestans* sporangia in the air

A. Schwendimann, Tomke Musa*, Haruna Gütlin, E. Graf, Y. Zeder, K. Koch, Ch. Kunz, R. al Naser, F. Mascher, G.-D. Lieberherr, S. Erb, B. Clot, T. Bendinelli, S. Dietler, Erny Niederberger*

*Presenting authors: Tomke Musa, Erny Niederberger

EuroBlight Workshop, de Werelt (NL), 15.05.2024

Content

- The measuring system SwisensPoleno and goal of the project
- Development of the *P. infestans* specific classifier
- Field trial setup and Lab trials
- Results
- Conclusions, Challenges and Outlook

SwisensPoleno

Automatic Real-time Monitoring of Bioaerosol

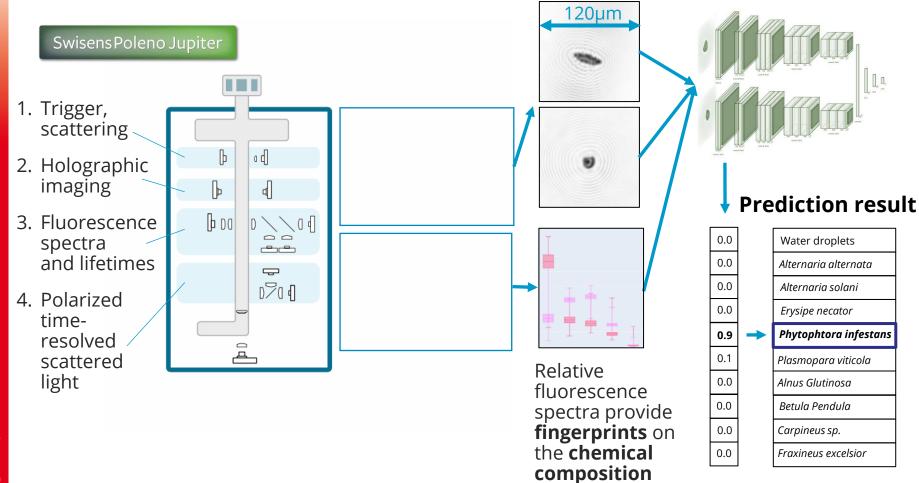
Current method for identifying pollen and spores

Sampling

Visualization

- Manual identification
- > Several days delay

- Fully automatic
- > Continuous monitoring
- > Real time identification



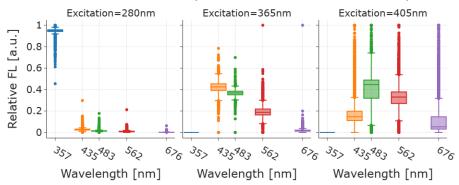
SwisensPoleno

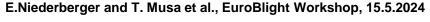
Holographic images provide rich **morphological** data

Classification in real-time classification using Machine Learning

E.Niederberger and T. Musa et al., EuroBlight Workshop, 15.5.2024

V

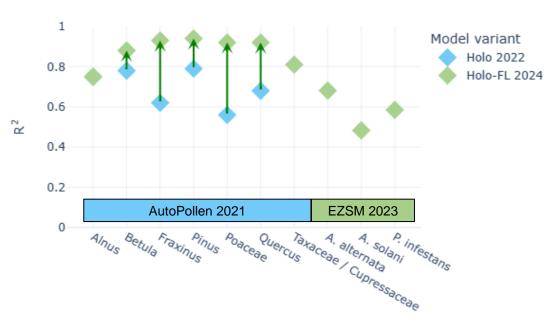

Development of classifier


- The classifier (Holo-FL 2024) was trained on 443'874 measurement events to distinguish between 58 different classes (21 spore taxa, 35 pollen taxa, 2 others)
- Fluorescence spectra data was included to improve classification of morphologically similar particles
- Empirical thresholds based on collected datasets are applied after classification

Front View Side View

Relative Fluorescence Spectra of 11'146 P. infestans spores

Classifier improvements


Holo 2022 <> Holo-FL 2024

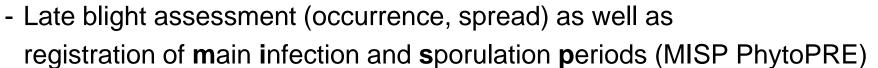
- The new classifier using fluorescence data significantly improves the performance of particle classification for pollen (AutoPollen 2021)
- Spores and sporangia relevant for potato farming correlate well with reference Hirst data.

P. infestans R²: 0.59

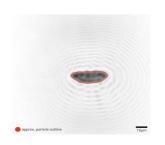
A. alternata R²: 0.68

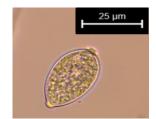
A. solani R²: 0.483

Particle Classes



Field and Lab trails

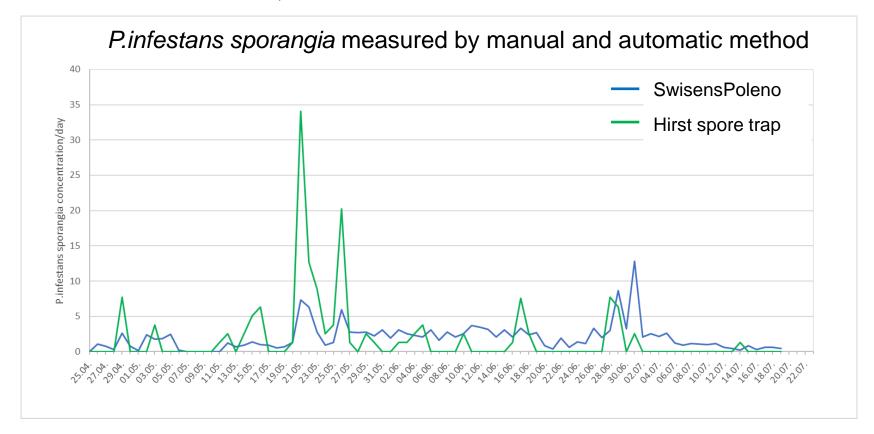

Field:


- untreated potato plots in Zurich and Zollikofen (BE)
- SwisensPoleno Jupiter (automatic) and traditional Hirst spore trap (manually)

Lab:

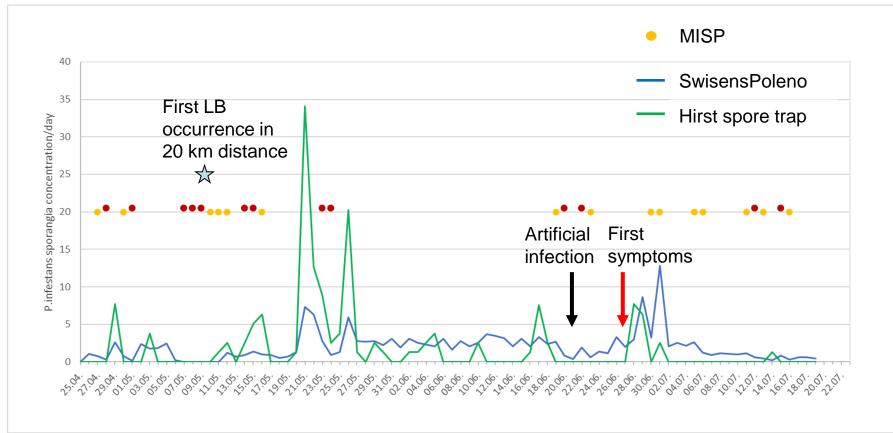
- clean datasets for classifier development
- SwisensPoleno system in the lab
- Measurements with artificially and naturally infected leaves/tubers, different Pi isolates

E.Niederberger and T. Musa et al., EuroBlight Workshop, 15.5.2024



Relation between measured sporangia concentration by different spore traps

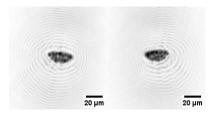
Location: Zurich Reckenholz, 2023



V

Relation between assessed DSS-infection risk, LB occurrence and sporangia concentration

Location: Zurich Reckenholz, 2023



Conclusions

Detection and identification of *P. infestans* sporangia successful with SwisensPoleno Jupiter system

Correlation between SwisensPoleno Jupiter, Hirst spore trap and occurrence of LB in the field

Reliable real-time measurement with SwisensPoleno Jupiter based on the specific developed classifier for *P. infestans* has to be validated with more sites and seasons

Challenges and Outlook

- Identification of the minimal spores concentration in the air which leads to a successful *P. infestans* infection in the field
- Analysis of weather data
- Do we find P.infestans sporangia also at higher elevations (rooftop) and can these measurements be used for reliable assessments?
- How to integrate into DSS (PhytoPRE) ?
- Further field trials without artificial infection to validate the classifier at several locations
- Expansion of identifiable spores,
 especially Alternaria solani and A. alternata

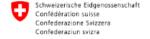
A. solani

A. alternata

Thank you for your attention

Swisens Erny Niederberger Elias Graf Yanick Zeder Andreas Schwendimann

Christa Kunz Rafah al Naser **Fabio Mascher**



Silas Dietler Tommaso Bindelli

Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

Gian-Duri Lieberherr Sophie Erb EPFL **Bernard Clot**

Agroscope

Tomke Musa Haruna Gütlin

Sponsered by: BLW-Project and Chips Joint 700

Question we would like to discuss with you

- Where do you see value of automatic spore monitoring?
- How would you quantify the value of spore detection?
- How dense should the measurement network be?

