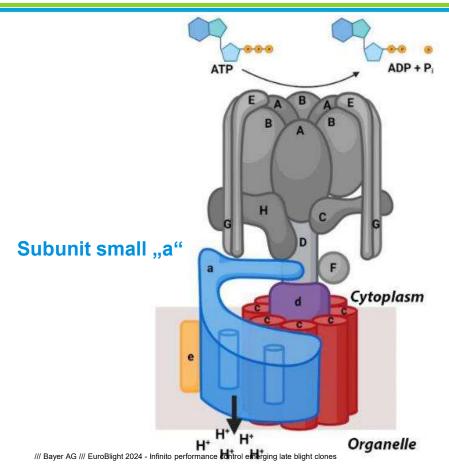


Performance of Infinito for control of emerging late blight clones

Albert Schirring, Juergen Derpmann, Emilia Hilz

¹Bayer AG, Division CropScience, Research, Disease Control, Monheim, Germany.

EuroBlight meeting Netherlands Lunteren, 15th May 2024



Mode of Action of Fluopicolide and sensitivity of *Phytophthora infestans*

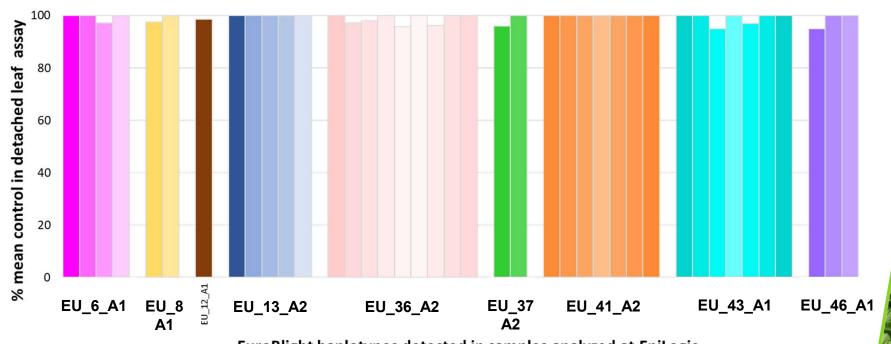
Fluopicolide holds a unique mode of action

Vacuolar-type Proton ATPase, the recently identified `real' target-site

V-ATPase activity in fungi can affect the

- · acidification of the fungal vacuoles
- regulation of intracellular pH
- transport of molecules across the plasma membrane

V-Type ATPase with *subunit a* identified as the fluopicolide target (https://link.springer.com/article/10.1007/s41348-024-00908-y)



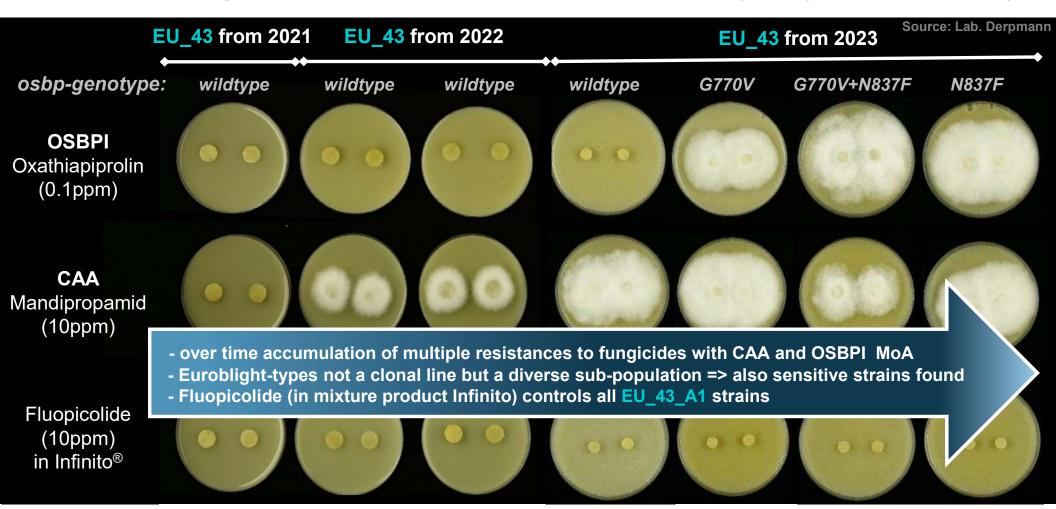
Phytophthora infestans: sensitivity of different EuroBlight-types towards fluopicolide

sensitivity data: EpiLogic

detached leaf test: 30 mg/l fluopicolide, samples collected in 2018 to 2023

EuroBlight haplotypes detected in samples analyzed at EpiLogic

- full sensitivity towards fluopicolide confirmed for all samples, independent of haplotype



Further analysis of P. infestans strains from various EuroBlight-types

P. infestans – difference in sensitivity of EU_43_A1-type according to EuroBlight collected in 2021, 2022 and 2023 (partly from WU, NL)

Pytophthora infestans – difference in fungicide sensitivity of strains from various EuroBlight-types collected in DE/NL in 2023

petri-dishes with discriminatory doses of active ingredients photographed after 7 to 12 DAI with strains

Cross-resistance study with three Modes of Action (MoA) with different *P. infestans* strains from DE and NL collected in 2023

first results of *in-vitro* Resistance Factors of different *osbp-*genotypes and EuroBlight haplotypes

Source: Lab. Derpmann

osbp-genotype (+1816M*)	EuroBlight haplotype	n –	Resistance Factor [mEC ₅₀ / mEC ₅₀ wildtype]		
			Oxathiapiprolin	Mandipropamid	Fluopicolide
G770V	EU_43_A1	11	>1000	>1000	1
	Other	1	>1000	4	2
G770V+N837F	EU_43_A1	1	>400	>1000	1
	EU_46_A1	21 <i>(+2)</i>	>1000 (>1000)	14 (> 600)	1 (1)
N837F	EU_36_A2	1	>1000	1	2
	EU_43_A1	4	>1000	>1000	1

- all osbp-genotypes lead to a strong increase in Resistance Factors values for OSBPIs
- osbp-genotypes are independent of EuroBlight haplotypes (EU_36, EU_43, EU_46 or Other)
- independent of osbp-genotype or EuroBlight haplotype: all isolates controlled by Fluopicolide

* role of 816M not clear yet

Assessing consequences of mutations in *cesA3*-gene affecting CAAs and mutations in *osbp*-gene affecting OSBPIs

methodology of greenhouse experiments

Plants: Potatoes, var. Bintje, BBCH 14-15, n=4

Spraying: 300 L/ha in a spray cabin (one day protective appl.)

Inoculation: wildtype and mutants, about 10⁴ Sp./mL, until wet

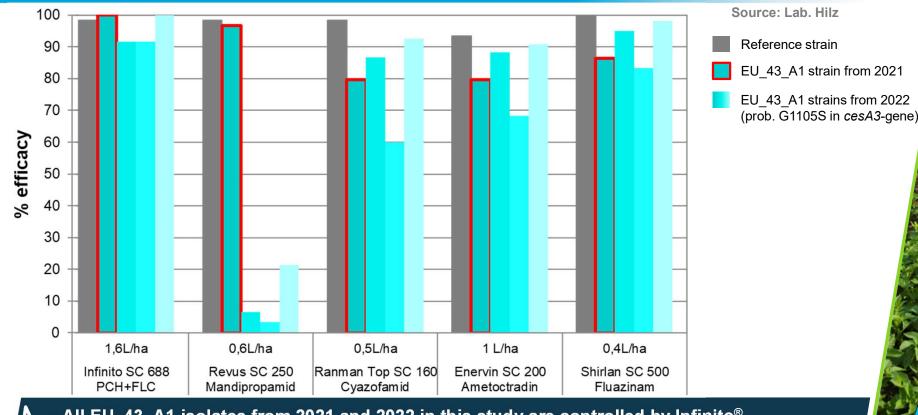
Incubation: 100% humidity 1DAI, then 95% humidity

Measurements:

- visual assessment at 7 or 8 DAI

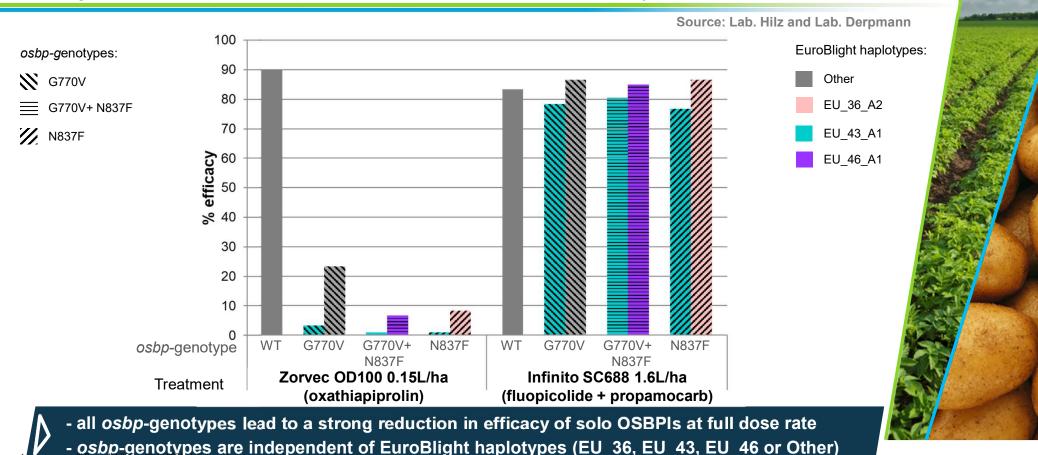
- scale: 0-100% disease severity on whole plant

 data analysis done with disease severity data, calculation of efficacy (ABBOTT%) from means


Separate experiments for each years always including the same wildtype strain as a reference

Efficacy of Infinito® on different *P. infestans* strains of the EU_43_A1 'haplotype' from 2021 and 2022, provided by WU

greenhouse experiment, protective application, assessment 8 days after infection


- All EU_43_A1 isolates from 2021 and 2022 in this study are controlled by Infinito[®] - EU_43_A1 isolate from 2021 is sensitive to mandipropamid, whereas 2022 isolates are resistant

WU: Wageningen University


Efficacy of ZorvecTM and Infinito[®] on different *P. infestans* strains from Germany and the Netherlands in 2023

greenhouse experiment, protective application, assessment 7 days after infection

Time lapse – Infinito performance

Need for Fungicide Resistance Management

Recommendations 2024

Strongly reduce selection pressure with CAA and OSBPI's fungicides on EU_43 and EU_46

- Fungicide strategy: Mix and alternate different MOA's
 - Implement preventive control schemes: do not tolerate any Phytophthora!
 - Strictly implement new FRAC guideline for CAA and OSBPI fungicides (March 2024)
 - No support for block applications: recommendation for alternation of MOA's
- □ Cultivar resistance / tolerance
 - Protect novel resistance genes with crop protection products
 - Robust varieties: use stacked resistance genes (e.g. > 2 genes)
- ☐ Task force Phytophthora joint approach: BO Akkerbouw, LTO, Breeders Association and CropLife
- ☐ Transition to 2030
 - Sustain fungicide activity with unique mode action, we cannot miss another MOA (inclusive CfS!)
 - Sustain activity of R genes, we cannot miss any of the novel Rpi genes

Effective Phytophthora control

Urgency for Cooperation, Partnership with Consistent messaging

- Crop management control of primary inoculumMonitor Phytophthora populations
- // Use resistant cultivars with different R- genes
- // Implement fungicide strategy according to crop characteristics (R gene content), crop stage and adapted to weather (temp, humidity) and disease pressure
- Implement effective resistance management for fungicides according to FRAC guidelines

Adopt digital technologies to enable smart control strategies

Acknowledgement