

Beyond chemical control of late blight: Implementing IPM strategies with Orange oil in the SAGROPIA project.

Eric Ferre - Global R&D Biocontrol and Adjuvants

Martien Melissant - Business development and Sales NL

EUROBLIGHT – May 2024

Rovensa Next at a glance.

The leading pioneer in sustainable agriculture

+3,000

People worldwide

30 R&D excellence centres and greenhouses

+90
Countries with sales presence

14
Production plants

+80
Partnerships with research centres & universities

Product characteristics and mechanism of action.

OROGANIC (NL), PREV-GOLD (FR, DE), OROCIDE PLUS (FR), etc.

Potato late blight registration expect

Potato late blight registration expected in France and Germany in 2024.

Product sold under different brands:

Active ingredient:

Orange oil - 60g/L (cold pressed)

Formulation type:

Micro Emulsion (ME)

Functions:

CONTACT Fungicide - Insecticide / Acaricide

Non-specific MoA:

Resistance management tool

No residue definition (no MRL fixed) Short PHI (0-3 days function of crops and countries)

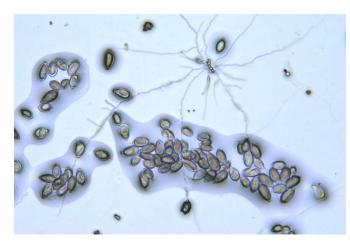
Fungicide

Disrupt cell membranes (reaction with phospholipids) of the fungi organs (spores, sporangia and mycelium) leading to **dessication** of the exposed organs.

Insecticide / Acaricide

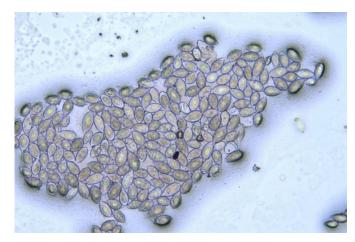
Damage the cuticle of soft

bodied insects leading to a loss of
body fluids and ultimately death
of the insect by desiccation.

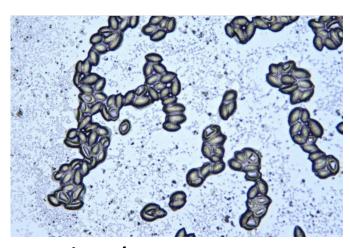


Focus on the effect on spores.

In-vitro evaluation Orange oil 60g/L – ME on *Phytophthora infestans* spore germination Wageningen University and Research (The Netherlands, 2019).


Spray application using a boom sprayer (250 L/ha) over Agar plates with *P. infestans* sporangia.

Pictures below were taken 56 hours after application.


Control

Zoospores emission and germination visible.

Orange oil 60g/L - ME @ 0.4%

Absence of germination of zoosporangia and zoospores.

Orange oil 60g/L - ME @ 0.8%

Absence of germination of zoosporangia and zoospores.

Optimal application timing.

Greenhouse trial

Comparison of pre and post inoculation application positioning

Wageningen University and Research (The Netherlands, 2017).

Crop: Potato (Bintje) – potted plants – **Target:** *Phytophthora infestans*

Design: RBC – 4 replicates

Application water volume: 250 L/ha

Inoculation: suspension of 5000 sporangia / mL sprayed over the plants (10mL/plant) followed by 7h of incubation period in high RH.

Key findings:

- Low efficacy when applied curatively (contact product)
- Preventative positioning equivalent to INFINITO
- Optimum application window: max. 3 days before infection

Assessment timing			5 days after inoculation			11 days after inoculation		
Treatment	Dose rate	Application timing	% severity on leaves	SNK 5%	Abbott efficacy (%)	% severity on leaves	SNK 5%	Abbott efficacy (%)
Untreated check	-	-	38	е	0	53	f	0
INFINITO	1.2 L/ha	PREVENTATIVE 3 days before inoculation	1	а	98	15	а	72
Orange oil 60g/L - ME	0.8%		3	а	93	20	ab	62
INFINITO	1.6 L/ha	CURATIVE 6 hours after inoculation	6	а	85	33	С	38
Orange oil 60g/L - ME	0.8%		21	bc	43	48	def	10
INFINITO	1.6 L/ha	CURATIVE 24 hours after inoculation	6	а	85	26	bc	50
Orange oil 60g/L - ME	0.8%		29	cd	23	51	ef	2

INFINITO: Propamocarb (625 g/L) + Fluopicolide (62.5 g/L) - SC

Standalone field efficacy evaluation.

Potato late blight - Summary of 30 GEP efficacy trials (2017-2020)

Consecutive applications of standalone solutions every 5 to 10 days across the full crop cycle. Assessment timings selected function of inf. in UTC (% infected foliage area).

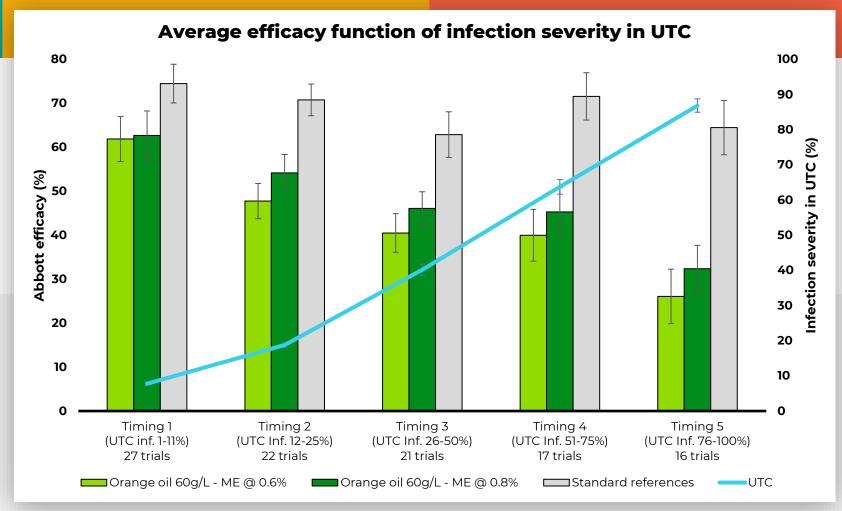
Trial locations:

EPPO Maritime: 12 trials (DE, NL, UK, CZ, FR N)

EPPO South-East: 9 trials (HU, RO, BG)

EPPO North-East: 7 trials (PL)

EPPO Mediterranean: 2 trials (ES, IT)


Trial design: RCB – 4 replicates

Application water volumes:

200 – 300 L/ha (21 trials) >300 – 400 L/ha (6 trials) >500 L/ha (3 trials)

Standard references (applied at label rate):

Standard references (applied at label rate):								
•	Copper compounds	(9 trials)						
•	Chlorothalonil	(3 trials)						
•	Cyazofamid	(3 trials)						
•	Cymoxanil + Mancozeb + Copper	(3 trials)						
•	Dimethomorph + Mancozeb	(2 trials)						
•	Mancozeb	(2 trials)						
•	Mandipropamid	(2 trials)						
•	Metiram	(2 trials)						
•	Conventional standard program	(2 trials)						
•	Propamocarb + Fluopicolide	(1 trial)						
•	Difenoconazole	(1 trial)						

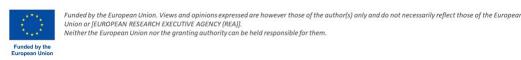
Orange Oil 60g/L - ME:

- Optimum efficacy when applied preventively (effects on spores).
- Efficacy demonstrated in numerous field trials (consecutive standalone applications) against potato late blight.
- High versatility (broad efficacy spectrum) and compatibility with many bio and conventional solutions (experience from other crops).
- **Resistance management** tool (non-specific MoA).

However, short persistence and absence of curative effect trigger the need of developing strategies (spraying sequences & tank mixtures) to reach satisfactory and robust control.

Collaborative projects, like Sagropia

involving various industry and academic partners are key to develop sustainable and robust strategies addressing farmer's needs.



Sustainable agriculture through novel pesticides using an integrated approach.

Objectives:

- 1. Confirm the efficacy of SAGROPIA solutions in replacing chemical pesticides against the target pests.
- **2. Supply affordable biopesticides with known mode of action** in market-relevant amounts.
- **3. Develop and validate alternative SAGROPIA IPM strategies** adapted to typical pest-disease complexes in key European regions.
- 4. Test and exhibit the newly developed IPM strategies in large-scale field trials under realistic conditions.
- **5. Assess the overall sustainability** (environmental, socioeconomic) of alternative IPM strategies.

Project partners:

For more information please check:

www.rtds-group.com/services/sagropia/ https://cordis.europa.eu/project/id/101136677 https://sagropia.eu/

