

Studies on the sensitivity status of *Alternaria solani* towards Qols, SDHIs and DMIs

EuroBlight Workshop, Lunteren, Netherlands

15th Mai 2024

Carolina Schroeder

BASF We create chemistry Fungicide control of Alternaria solani

Quinone Outside Inhibitors (QoI)

- Inhibitor of respiration in complex III at Qo-site
- Succinate Dehydrogenase Inhibitors (SDHI)
- Inhibitor of respiration in complex II at SDH
- Demethylation Inhibitors (DMI)
- Sterol biosynthesis Inhibitor

Development of the frequency Qol adaptation (F129L) in Alternaria solani

BASF European Monitoring (F129L pheno- or genotype)

Latest FRAC statement

Resistance to QoI is associated to the presence of the F129L mutation and molecular information are provided below:

Data from 2023 showed a situation as known from previous years:

High frequency was detected in Belgium, Germany, Netherlands and Sweden.

Moderate frequency was detected in France, Latvia and Poland.

Data from 2022 showed a situation as known from previous years:

High frequency was detected in Denmark, Netherlands and Sweden.

Moderate frequency was detected in Austria, Belgium, Germany and Norway

Majority of European population with F129L phenotype

Fungicide control of Alternaria solani

Quinone Outside Inhibitors (QoI)

Inhibitor of respiration in complex III at Qo-site

Succinate Dehydrogenase Inhibitors (SDHI)

• Inhibitor of respiration in complex II at SDH

Demethylation Inhibitors (DMI)

Sterol biosynthesis Inhibitor

EC₅₀ values of wildtype, B-H278Y and C-H134R mutations on different SDHIs

C-H134R shows strong effect on all SDHIs, H278Y in 2023 not detected, H134R dominates

We create chemistry

5

Development of the frequency of SDHI resistance in Alternaria solani in Europe

BASF Monitoring (% SDHI resistant isolates)

Latest FRAC statement

Potato – Early blight, Alternaria leaf spot (*Alternaria solani, A. alternata*) (Bayer, BASF, Syngenta)

In **2022**, *A.solani* samples were analyzed originating from Austria, Denmark, and Norway.

The following mutations have been detected: B-H278R/Y, C-H134R, D-D123E with B-H278Y and C-H134R being the predominant mutations found. Low frequencies of target site mutations were found in Norway. Moderate frequencies were found in Austria. High frequencies were detected in Denmark.

SDHI (Fluopyram) analysis 2023 in NL trial sites

SDHI resistance heterogenous distributed, over all moderate levels in Europe. Mutation pattern changed in last years.

Fungicide control of Alternaria solani

Quinone Outside Inhibitors (QoI)

- Inhibitor of respiration in complex III at Qo-site
- Succinate Dehydrogenase Inhibitors (SDHI)
- Inhibitor of respiration in complex II at SDH

Demethylation Inhibitors (DMI)

• Sterol biosynthesis Inhibitor

Sensitivity distribution of *Alternaria solani* to Mefentrifluconazole and Difenoconazole in 2021-2023

Isolates with slight adaptation were detected

Sensitivity distribution of *Alternaria solani* to Mefentrifluconazole and Difenoconazole in 2021-2023

Mutations are homologous to mutations in other phytopathogenic species and relate to slight DMI adaptation with limited effects

	CYP51 mutations found		homologous to			
	L143F		L144F (Cercospora beticola) L140F (Venturia inaequalis)			
	G446S		G444S (Venturia inaequalis)			
	G462S		G461S (Monilinia frucitcola) G460S (Pyrenopeziza brassicae)			
Molecular Plant Pathology		Journal of Plant Diseases and Protection https://doi.org/10.1007/s41348-021-00516-0 ORIGINAL ARTICLE		DÇG	Research Article Received: 8 July 2020 Revised: 10 November 2020 Accep (wileyonlinelibrary.com) DOI 10.1002/ps.6197	Red article published: 25 November 2020 Published online in Wiley Online Lib
		Mutations in <i>Cyp51</i> of <i>Venturia inaequalis</i> and their effects on DMI sensitivity		Evidence for the association of target-site resistance in <i>cyp51</i> with reduced DMI sensitivity in European <i>Cercospora beticola</i> field isolates		
		Mascha Hoffmeister ¹ · Raffaello Zito ¹ · Jan Böhm ¹ · Gerd Stammler ¹		Maximilian M Muellender," © Anne-Katrin Mahlein," Gerd Stammler" and Mark Varrelmann ^a		

SC

🗖 🛛 BASE

The Point Mutation G461S in the MfCYP51 Gene is Associated with Tebuconazole Resistance in Monilinia fructicola Populations in Brazil

Proof that mutations are responsible for slight DMI adaptation

- Transformation of mutations in A. solani wildtype
- Transfer of gene cassette with double mutation and one single mutation (L143F or G446S, L143F+G446S) in Alternaria solani WT
- Gene transfer in Alternaria solani cells was achieved by protoplast transformation and confirmed by southern blot

EZ

Resistance factor of transformants are in the same low range as for field isolates (Difenoconazole)

Survival of the fittest: L143F+G446S or WT?

- Inoculation of tomato plants with a mix of five L143F+G446S and five wildtypes
- After each cycle, L143F+G446S is quantitatively analysed by pyrosequencing
- L143F+G446S haplotypes decreased rapidly

Well: E1 Assay: ALTESO_cyp51_L143F_K... Sample ID: ALTESO 5 Sequence to analyze: AAGYTCATGGAGCAGAAGAAGTTTGTCAA

Constitution and Series and Seri

Internal

Conclusions

- Qol
 - F129L widespread, but influence on QoI adaptation is limited
 - Contribution to disease and resistance management
- SDHI
 - C-H134R mutation dominates adaptation to SDHI nowadays
 Jimited cross-resistance between SDHIs
 - Significant part of population is still sensitive
- DMI
 - Stable field efficacy of DMIs
 - Slight adapted isolates with low resistance factors found caused by target site mutations
 - CYP51 mutants are less fit in competitive experiments
 - Monitoring for evaluation of sensitivity status established and running

We create chemistry