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Context
• Varietal resistance : reduce disease and needs for 

treatments 
• Variability : difficulty for prediction

• Goal : 
• explore epidemics diversity
• create types 
• evaluate predictability

• In this presentation : 
• Epidemic diversity and discrimination types created
• Comparison with official ratings
• Variables importance to predict epidemic type
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Datasets

• Epidemic dataset : 
• 2526 sets of foliage destruction observations
• 1 site : Ploudaniel, France, oceanic climate
• 29 years, from 1994 to 2022
• 201 potato genotypes 

• 43 varieties (1427 curves)
• 23 differential hosts (759 curves)
• 3+120 breeding lines (340 curves)
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Datasets

• Climate dataset : 
• Weather station in Ploudaniel : daily 

temperature, humidity and wind
• Variables : means between planting and 

harvest

• Phytophthora infestans dataset : 
• From 1999 to 2022 : genotyped lineages 

from the fields
• Variables : 1st and 2nd most frequent 

lineages, lineages diversity, % 1st most 
frequent lineage
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• Logistic regression : 
• a: asymptote, final severity
• b: time 50% final severity (inflection point)
• c: inverse of slope at inflection point

• PCA on a,b,c
• Hierarchical clustering on PCA results

Classification method
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Classification results
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Classification compared to official ratings

For 34 varieties with official resistance ratings
1 color = 1 variety : most frequent epidemic type or official rating

Discrimination between types clearer : 
- Less groups
- Type assignment co-occurs 

observations and larger time period 
VS evaluations different ages and 
over 2 years

10



Predicting epidemic types

• 5 epidemic types :
• Linked to epidemic parameters
• Apparently discriminative enough
• Variability of varieties

• Predictability of types ? 

• Method : random forest (machine 
learning) and importance of variables
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Predicting epidemic types

• 3 cluster : host sufficient to predict
• 4 cluster and more : importance of pathogen and climate 

Host Host HostP. infestans P. infestansClimate Climate
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Predicting epidemic types

• Severe early type : climate > P. infestans > host
• Severe late type : host > P. infestans > climate
• No epidemic type : climate > P. infestans > host 

SLF

Not satisfactory 

Host
P. infestans Climate P. infestans Climate P. infestans Climate

WLF
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Conclusion
• Typology based on severity, timing and 

slope of epidemics

• Combining varietal resistance with 
predictive tools faces : 

• Creating discriminative and predictable 
types

• Knowing varietal specific features
• Taking into account pathogen population
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What’s next ? 

• For individual registered varieties : 
• Changes of epidemic parameters over time
• Steps or gradual loss of resistance ? 
• A common rule ? 
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What’s next ? 

• For individual registered varieties : 
• Changes of epidemic parameters over time
• Steps or gradual loss of resistance ? 
• A common rule ? 

• Challenge to untangle resistance erosion, 
specific year effects, lineages effects etc…
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Classification compared to official ratings
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