

Rating potato varieties: 30 years of experiments reanalyzed to explicit resistance and explain its variability.

19th EuroBlight Workshop 13-16 May, 2024

Delphine Chauvin, phD student with Arvalis and INRAE

Context

- Varietal resistance : reduce disease and needs for treatments
- Variability : difficulty for prediction
- Goal :
 - explore epidemics diversity
 - create types
 - evaluate predictability
- In this presentation :
 - Epidemic diversity and discrimination types created
 - Comparison with official ratings
 - Variables importance to predict epidemic type

Datasets

- Epidemic dataset :
 - 2526 sets of foliage destruction observations
 - 1 site : Ploudaniel, France, oceanic climate
 - 29 years, from 1994 to 2022
 - 201 potato genotypes
 - 43 varieties (1427 curves)
 - 23 differential hosts (759 curves)
 - 3+120 breeding lines (340 curves)

Datasets

• Climate dataset :

- Weather station in Ploudaniel : daily temperature, humidity and wind
- Variables : means between planting and harvest
- Phytophthora infestans dataset :
 - From 1999 to 2022 : genotyped lineages from the fields
 - Variables : 1st and 2nd most frequent lineages, lineages diversity, % 1st most frequent lineage

Classification method

- Logistic regression :
 - a: asymptote, final severity
 - b: time 50% final severity (inflection point)
 - c: inverse of slope at inflection point
- PCA on a,b,c
- Hierarchical clustering on PCA results

Classification method

- Logistic regression :
 - a: asymptote, final severity
 - b: time 50% final severity (inflection point)

Dim 2 (23.09%)

0.5

-0.5

- c: inverse of slope at inflection point
- PCA on a,b,c
- Hierarchical clustering on PCA results

Classification results

Days after planting

Classification results

Classification results

Days after planting

For 34 varieties with official resistance ratings

1 color = 1 variety : most frequent epidemic type or official rating

Epidemic curves for epidemic types

Epidemic curves for ratings

Discrimination between types clearer :

- Less groups
- Type assignment co-occurs observations and larger time period VS evaluations different ages and over 2 years

Predicting epidemic types

- 5 epidemic types :
 - Linked to epidemic parameters
 - Apparently discriminative enough
 - Variability of varieties
- Predictability of types ?
- Method : random forest (machine learning) and importance of variables

Predicting epidemic types

- 3 cluster : host sufficient to predict
- 4 cluster and more : importance of pathogen and climate

Predicting epidemic types

- Severe early type : climate > *P. infestans* > host
- Severe late type : host > *P. infestans* > climate
- No epidemic type : climate > *P. infestans* > host

Conclusion

- Typology based on severity, timing and slope of epidemics
- Combining varietal resistance with predictive tools faces :
 - Creating discriminative and predictable types
 - Knowing varietal specific features
 - Taking into account pathogen population

What's next ?

- For individual registered varieties :
 - Changes of epidemic parameters over time
 - Steps or gradual loss of resistance ?
 - A common rule ?

What's next?

- For individual registered varieties :
 - Changes of epidemic parameters over time
 - Steps or gradual loss of resistance ?
 - A common rule ?
- Challenge to untangle resistance erosion, specific year effects, lineages effects etc...

Thanks you for listening and thanks to every person that made this work possible :

- Thanks to GEVES and Roland Pellé for providing the main dataset and to RGCO for the agronomical managment of the experiments
- Thanks to Roselyne Corbière and Romain Mabon for providing the Phytophthora infestans dataset
- Thanks to Melen Leclerc, Didier Andrivon and Denis Gaucher for their supervision on this work

Official rating post cluster observation

čatir	11 to 30 y/o Official ratings							1 to 1		
Ľ	0	0	0	0	0	3	70	0		
	0	0	0	0	0	4	60	0		
	13	15	0	0	0	5	40	0		
	24	13	0	0	0	6	30	0		
	33	77	2	12	1	7	20	32		
-	0	0	6	1	1	8	0	3		
	0	0	17	0	3	9		0		
	SEF	SLF	WLF	ILS	NOE		L	SEF	L C	
	26%	629	% 1	2%				37%		

to 10 y/o Official ratings

Official rating post cluster observation

20

