Bacillus subtilis 30B-B6, a promising bacterium for the biocontrol of early and late blight

Gil Colau, Simon Caulier, Claude Bragard, Jacques Mahillon and Anne Legrève
Can biopesticides replace chemical fungicides?

- Food safety
- Efficacy
- Cost
- “Easy use”
- Effects on non-targets
- Environmental threats
- Human health
- Resistances appearance
- Survival during storage
- Homologation process
- Efficacy in field
- Toxicity
- Diversity of modes of action
- Knowledges
- Less resistances
- Environmentally friendly
- Delay chemical pesticide use
- Less dangerous for humans

Everything needs to be qualified!

Many questions remain!
The context

- Searching for alternatives to chemical pesticides
- Using indigenous microflora in an integrated pest management strategy
- Finding biocontrol agents (BCA) against *Phytophthora infestans* and other pathogens of solanaceae
- Understanding the mechanisms involved in the antagonism
Characteristics of a good biocontrol agent (BCA)

- Direct antagonistic effects
- Production of antimicrobial compounds

In vitro

In vivo

BCA
Characteristics of a good biocontrol agent (BCA)

Diversity of the antimicrobial molecules classes from the *Bacillus subtilis* group. The subdivision between the classes is based on the biosynthetic pathway.
Characteristics of a good biocontrol agent (BCA)

- **In vitro**
 - Direct antagonistic effects
 - Production of antimicrobial compounds

- **In vivo**
 - Plant defences stimulation

- **Indigenous**
 - BCA
 - Safety for humans, environment

- **Industrial part**
 - Production, storage optimization
Strategy to select biological control agents (BCA)

- Sampling of Belgian soils from agroecosystems and isolation of bacteria (Pseudomonas and Bacillus spp.) - 2826 strains
- High-throughput screening for antagonistic activities and identification of candidate BCA (RNAr 16S) - 60 strains
- Screening for genes related to potential human toxins and for antagonist compound related genes (PCR assays)
- Characterization of enzymatic activities and detection of bioactive compounds using specific media
- Efficacy of BCA against pathogens in plants under controlled conditions - 11 strains
- Efficacy of BCA against potato late blight under field conditions - 4 strains
Characteristics of the strain 30B-B6

\[
\text{Growth Inhibition Percentage} = \left(1 - \frac{S_{\text{strain}}}{S_{\text{control}}} \right) \times 100
\]

Caulier et al., 2018, Frontiers in Microbiology, 9, 143-158
Characteristics of the strain 30B-B6

<table>
<thead>
<tr>
<th>GIP</th>
<th>30</th>
<th>50</th>
<th>70</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not detected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direct Antagonism

- Bacteria
 - *Pseudomonas campestris*
 - *Pseudomonas putida*
- Chromista
 - *Alteromonas sp.
- Fungi
 - *Fusarium solani*

Antagonism Gene Detection

- Enzymes
 - Exochitinase
 - Chitinase
- Lipopeptides
 - Bacilysin
 - Surfactin
- Peptides
 - Zwitterlicnine A
 - Difidocilin
- Polymyxins
 - Macrolactin

Virulence Factors

- Bio-active compound production
- Enzymatic activities
- Translocators
- Bio-surfactants

ID by 16S rRNA sequencing

- B. subtilis 30B-B6 MF062631

Caulier et al., 2018, Frontiers in Microbiology, 9, 143-158
Characteristics of the strain 30B-B6

In vitro

- **Direct Antagonism**

- **Antagonism Gene Detection**
 - Enzymes
 - Lipopeptides
 - Peptides
 - Polypeptides

- **Virulence Factors**
 - Bio-active compound production

In vivo

- **Direct Antagonism**
 - Greenhouse trials
 - Field trial

Caulier et al., 2018, Frontiers in Microbiology, 9, 143-158
Pilot field trial (2016)

![Graph showing late blight severity and precipitation over days, with treatments indicated.]

July, 8th

Caulier et al., 2018, Frontiers in Microbiology, 9, 143-158
Versatile Antagonistic Activities of Soil-Borne *Bacillus* spp. and *Pseudomonas* spp. against *Phytophthora infestans* and Other Potato Pathogens

Simon Caulier¹,², Annika Gillis², Gil Colau¹, Florent Licciardi², Maxime Liépin¹, Nicolas Desognières¹, Pauline Modrie², Anne LeGrève¹, Jacques Mahillon² and Claude Bragard¹*

¹ Phytopathology-Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, ² Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
Can *Bacillus subtilis* 30B-B6 stimulate the plant's defences?

SAR: Systemic Acquired Resistance

** ISR:** Induced Systemic Resistance

Salicylic Acid (SA)

Jasmonic Acid (JA)

Ethylene (ET)

BCA

Plant defences stimulation

Indigenous, present in the environment

Study on a model plant: *Solanum lycopersicum*

Non-pathogenic rhizobacteria or fungi (PGPF/PGPR)

Crosstalk

Induction of defence mechanisms
Stimulation of systemic plant resistance

Bacterial suspension
LB medium
2 mL
10^8 CFU/mL

AND/OR

Bacterial suspension
LB medium
100 mL
10^8 CFU/mL

5 old leaves plant
Compost
Variety: moneymaker

A. solani
Conidia suspension
15 000 c/mL

6 h
Symptoms quantification
Stimulation of systemic plant resistance

Evolution of the symptoms

Area Under the Disease Progress Curve (% x day)

AUDPC

N=10
Stimulation of systemic plant resistance

<table>
<thead>
<tr>
<th>Treatments</th>
<th>On roots</th>
<th>On leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>LB medium</td>
<td></td>
</tr>
<tr>
<td>30B-B6</td>
<td>Bacterial suspension</td>
<td></td>
</tr>
<tr>
<td>30B-B6_SR</td>
<td>Bacterial culture supernatant</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- Alternaria solani

- No contact between bacteria and pathogen!

- Symptom quantification

Inoculation of A. solani 6h post bacteria
Stimulation of systemic plant resistance

- Bacterial suspension
Stimulation of systemic plant resistance

- Bacterial suspension
Stimulation of systemic plant resistance

- Bacterial culture supernatant

Evolution of the disease severity on tomato treated with the bacterial strain

![Graph showing the evolution of disease severity over time](image)
Curative effect of 30B-B6

- Application of the bacterial suspension 24 hpi

Evolution of the disease severity on tomato treated with the bacterial strain
Summary: the preventive and curative effect of 30B-B6 against *A. solani* under controlled conditions

<table>
<thead>
<tr>
<th>Exp</th>
<th>n</th>
<th>AUDPC 14d</th>
<th>SD AUDPC</th>
<th>PI 14d (%)</th>
<th>PI Mean (%)</th>
<th>SD PI</th>
<th>Year</th>
<th>Period of year</th>
<th>Mean RH (%)</th>
<th>Mean Td (°C)</th>
<th>Mean Tn (°C)</th>
<th>Duration (d)</th>
<th>STAT AUDPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventive</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>n</td>
<td>AUDPC 14d</td>
<td>SD AUDPC</td>
<td>PI 14d (%)</td>
<td>PI Mean (%)</td>
<td>SD PI</td>
<td>Year</td>
<td>Period of year</td>
<td>Mean RH (%)</td>
<td>Mean Td (°C)</td>
<td>Mean Tn (°C)</td>
<td>Duration (d)</td>
<td>STAT AUDPC</td>
</tr>
<tr>
<td>Rep_1</td>
<td>5</td>
<td>46.35</td>
<td>10.28</td>
<td>73.00</td>
<td>74.51</td>
<td>6.89</td>
<td>2017</td>
<td>March/April</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>19</td>
<td>***</td>
</tr>
<tr>
<td>Rep_2</td>
<td>10</td>
<td>38.22</td>
<td>7.45</td>
<td>68.50</td>
<td>41.71</td>
<td>7.50</td>
<td>2017</td>
<td>May</td>
<td>90.85</td>
<td>16.92</td>
<td>13.91</td>
<td>15</td>
<td>***</td>
</tr>
<tr>
<td>Rep_3</td>
<td>6</td>
<td>35.08</td>
<td>6.26</td>
<td>82.03</td>
<td>77.58</td>
<td>9.81</td>
<td>2017</td>
<td>October</td>
<td>73.01</td>
<td>20.98</td>
<td>17.56</td>
<td>16</td>
<td>***</td>
</tr>
<tr>
<td>Cont_1</td>
<td>5</td>
<td>171.67</td>
<td>21.87</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2017</td>
<td>March/April</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>19</td>
<td>–</td>
</tr>
<tr>
<td>Cont_2</td>
<td>10</td>
<td>121.33</td>
<td>62.79</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2017</td>
<td>May</td>
<td>90.85</td>
<td>16.92</td>
<td>13.91</td>
<td>14</td>
<td>***</td>
</tr>
<tr>
<td>Cont_3</td>
<td>6</td>
<td>195.22</td>
<td>24.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2017</td>
<td>October</td>
<td>73.01</td>
<td>20.98</td>
<td>17.56</td>
<td>16</td>
<td>–</td>
</tr>
<tr>
<td>SR</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>n</td>
<td>AUDPC 14d</td>
<td>SD AUDPC</td>
<td>PI 14d (%)</td>
<td>PI Mean (%)</td>
<td>SD PI</td>
<td>Year</td>
<td>Period of year</td>
<td>Mean RH (%)</td>
<td>Mean Td (°C)</td>
<td>Mean Tn (°C)</td>
<td>Duration (d)</td>
<td>STAT AUDPC</td>
</tr>
<tr>
<td>Rep_1</td>
<td>10</td>
<td>128.15</td>
<td>35.46</td>
<td>14.19</td>
<td>9.24</td>
<td>4.44</td>
<td>2017</td>
<td>June</td>
<td>77.66</td>
<td>19.37</td>
<td>15.72</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>Rep_2</td>
<td>5</td>
<td>153.80</td>
<td>28.17</td>
<td>5.59</td>
<td>75.49</td>
<td>15.77</td>
<td>14</td>
<td>July/Augustus</td>
<td>75.49</td>
<td>19.11</td>
<td>15.77</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>Rep_3</td>
<td>16</td>
<td>149.33</td>
<td>73.37</td>
<td>7.94</td>
<td>75.49</td>
<td>15.77</td>
<td>14</td>
<td>October</td>
<td>78.30</td>
<td>15.64</td>
<td>13.65</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>Cont_1</td>
<td>10</td>
<td>162.90</td>
<td>37.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2017</td>
<td>June</td>
<td>77.66</td>
<td>19.37</td>
<td>15.72</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>Cont_2</td>
<td>5</td>
<td>185.02</td>
<td>27.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2017</td>
<td>October</td>
<td>78.30</td>
<td>15.64</td>
<td>13.65</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>Cont_3</td>
<td>10</td>
<td>143.77</td>
<td>25.33</td>
<td>36.24</td>
<td>41.71</td>
<td>7.50</td>
<td>2018</td>
<td>March</td>
<td>84.60</td>
<td>15.79</td>
<td>14.01</td>
<td>15</td>
<td>**</td>
</tr>
<tr>
<td>Curative</td>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>n</td>
<td>AUDPC 14d</td>
<td>SD AUDPC</td>
<td>PI 14d (%)</td>
<td>PI Mean (%)</td>
<td>SD PI</td>
<td>Year</td>
<td>Period of year</td>
<td>Mean RH (%)</td>
<td>Mean Td (°C)</td>
<td>Mean Tn (°C)</td>
<td>Duration (d)</td>
<td>STAT AUDPC</td>
</tr>
<tr>
<td>Rep_1</td>
<td>5</td>
<td>46.21</td>
<td>9.81</td>
<td>38.63</td>
<td>41.71</td>
<td>7.50</td>
<td>2018</td>
<td>June</td>
<td>77.58</td>
<td>19.41</td>
<td>15.51</td>
<td>15</td>
<td>**</td>
</tr>
<tr>
<td>Rep_2</td>
<td>5</td>
<td>93.72</td>
<td>27.10</td>
<td>50.26</td>
<td>75.49</td>
<td>15.77</td>
<td>15</td>
<td>July/Augustus</td>
<td>75.49</td>
<td>19.11</td>
<td>15.77</td>
<td>15</td>
<td>***</td>
</tr>
<tr>
<td>Rep_3</td>
<td>10</td>
<td>225.50</td>
<td>34.37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2018</td>
<td>March</td>
<td>84.60</td>
<td>15.79</td>
<td>14.01</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>Cont_1</td>
<td>5</td>
<td>75.30</td>
<td>16.22</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2018</td>
<td>June</td>
<td>77.58</td>
<td>19.41</td>
<td>15.51</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>Cont_2</td>
<td>10</td>
<td>188.42</td>
<td>52.44</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2018</td>
<td>July/Augustus</td>
<td>75.49</td>
<td>19.11</td>
<td>15.77</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>Cont_3</td>
<td>5</td>
<td>143.77</td>
<td>25.33</td>
<td>36.24</td>
<td>9.24</td>
<td>41.71</td>
<td>2018</td>
<td>March</td>
<td>84.60</td>
<td>15.79</td>
<td>14.01</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>Cont_4</td>
<td>5</td>
<td>25.30</td>
<td>6.57</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2018</td>
<td>June</td>
<td>77.58</td>
<td>19.41</td>
<td>15.51</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>Cont_5</td>
<td>10</td>
<td>188.42</td>
<td>52.44</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2018</td>
<td>July/Augustus</td>
<td>75.49</td>
<td>19.11</td>
<td>15.77</td>
<td>15</td>
<td>–</td>
</tr>
</tbody>
</table>

Tukey test (p-value)

- *** < 0.001
- ** < 0.01
- * < 0.05

Evolution of the protection of tomato plants

- **30B-B6_preventive**
- **30B-B6_curative**
- **30B-B6_supernatant**
Take home messages

• The strain 30B-B6 has a direct antagonistic activity *in vitro* against *Phytophthora infestans*, *Rhizoctonia solani*, *Fusarium solani* and *Alternaria solani*.

• PCR assays revealed:
 • the presence of several genes involved in the production of antimicrobial compounds (LPs, bacilysin, glucanase)
 • the absence of the potential virulence factors to humans tested

• The strain 30B-B6 is able to control *P. infestans* on potato plants under controlled conditions (PI: 70%) and under field conditions (PI:22%)

• The strain 30B-B6 does activate the systemic defences of tomato against *A. solani* by interacting with tomato roots. Preventive effect: PI:75%; curative effect: PI:42%.
Perspectives

• To identify the modes of action of the strain 30B-B6:
 • Impact of siderophores and/or lipopeptides (production, purification and application on tomato roots)
 • Dosage of hormones (ET, SA,...) related to plants defences
 • RNAseq analyses

• To characterize the environmental factors that influence the strain's ability to stimulate the plant's defences

• To optimize the bacteria formulation (UV, desiccation, leaching,...)
 → Improve the efficacy in the field

• To introduce bacteria applications in an integrated pest management strategy
 → Combination with chemical or organic fungicides
 • The strain 36B-B6 is not susceptible to copper oxychloride in co-culture (data not shown)
Thank you for your attention!

Acknowledgements

Dr. Simon Caulier
Florent Licciardi
Dr. Annika Gillis
Charlotte Liénard
Marie-Eve Renard
Alice Cousin
Martin Schoonejans
Vittorio Nicoloso Maria
Pr. Jacques Mahillon
Pr. Claude Bragard
Pr. Anne Legrève

Funded by: