

GRRC report of yellow and stem rust genotyping and race analyses 2021.

Mogens Støvring Hovmøller, Mehran Patpour, Julian Rodriguez-Algaba, Tine Thach, Chris K. Sørensen, Annemarie Fejer Justesen & Jens Grønbech Hansen, 04.05.2022.

Email: mogens.hovmoller@agro.au.dk

Key highlights stem rust

- Three genetic groups of stem rust were prevalent in Europe. Additional spread was observed in France in particular, but also in other countries in Central/West Europe.
- Clade III-B (race TTRTF) was widespread in southern part of Europe, and in 2021 also detected in Tunisia and Switzerland. Since first detection in Sicily in 2016, we have confirmed TTRTF in 9 countries in Europe, and 4 countries in Africa/Asia.
- Clade IV-F (race TKKTF) was detected in 4 African and 13 European countries in 2021. Previously, we have also detected TKKTF in Azerbaijan, Egypt, Iran, Iraq and Tajikistan.
- Clade IV-B (races TKTTF, TKRTF and TTTTF) was observed in Tanzania and Tunisia and in 8 European countries in 2021. TKRTF was observed in a single isolate from Spain; TTTTF was observed in East Africa but not in Europe.
- Clade I (Ug99) was not observed outside East Africa.

Key highlights yellow rust

- A new incursion of a highly virulent race in East Africa represented a new genetic group, termed PstS16. It was detected in December 2020 in Ethiopia and became widespread in farmer's fields and experimental plots in 2021, but not detected in neighboring countries. PstS16 was also widespread in Afghanistan in 2021.
- Genetic group PstS13 spreads to new areas in South America, including Paraguay, where yellow rust was detected for the first time. A single race/genotype is still prevalent although local variants have been observed. PstS13 has mainly affected triticale and durum wheat in Europe and bread wheat in South America and Australia.
- PstS14 was widespread in Iraq, which represents first detection of this genetic group in Asia. Present in Europe and northern Africa since 2016.
- PstS10 was the most prevalent genetic group in Europe. At least 4 races were detected, each adapted to local, widely grown wheat varieties.
- PstS11 and PstS1/PstS2 were confirmed in multiple countries in East Africa.
- PstS7 (Warrior race) was less prevalent than in previous years, however, up to now detected in Europe, northern Africa and South America.
- Additional genetic groups, including groups which have not yet been named (collectively termed 'Other'), were either absent or detected in low frequencies.
- Samples from Nepal were genetically different from all named groups and revealed high pathogen diversity in this area.

Summary of SSR genotyping and race phenotyping results from GRRC (2008-present) is available online (http://www.wheatrust.org/), including an updated table showing the relationship between races and genetic groups.

This report presents molecular genotyping and race typing results with a focus on samples of rust infected wheat, barley and triticale collected in 2021 across four continents, i.e., Europe, Asia, Africa and South America. The report comprises results for the wheat yellow/stripe rust (*Puccinia striiformis*) as well as the wheat stem rust, *P. graminis* f.sp. *tritici*. The testing of additional samples from 2021 and beginning of 2022 is ongoing with emphasis on alignment of results from different rust diagnostic laboratories and genotyping approaches with the aim of presenting the global landscape for yellow and stem rust infecting wheat.

In 2021, a total of 889 samples/derived isolates from 27 countries were handled (Table 1, Table 2). Each sample generally consisted of multiple rust infected leaves or stems. Incoming samples entered a recovery procedure in parallel to Simple Sequence Repeat (SSR) genotyping based on the incoming samples of rust infected plant material. More than 400 of samples were successfully recovered. In case of the presence of more than a single genotype within a sample, additional genotyping was based on purified samples. Subsets of recovered isolates were race phenotyped using bioassays consisting of differential wheat lines inoculated with live spore samples multiplied under strict experimental conditions (Hovmøller et al. 2017; Patpour et al., 2022).

Nomenclature of races and genetic groups

Genetic groups of yellow rust were named Pst followed by a digit. Race variants were indicated by the additional virulence observed compared to the virulence profile of the core genetic group. For detailed rationale and naming of significant *P. striiformis* races and genetic groups, see Ali et al. (2017) with an updated summary on the GRRC website. The genetic grouping of stem rust is based on Szabo et al. (2022), and detailed alignment of the SSR and SNP genotyping results between the Cereal Disease Lab (USA) and GRRC; the race phenotyping was based on 20 internationally agreed wheat lines differentiating virulence in stem rust (Jin et al., 2008; Patpour et al., 2022).

In yellow rust, a strong correlation between genetic group and race phenotype has been observed for clonal populations, and similarly, most races of wheat stem rust were associated with specific genetic groups ('clades'). A comprehensive documentation of the nomenclature of stem rust races and genotypes, and the underlying experimental procedures are available on the GRRC website, where new mapping tools were implemented. However, in sexual populations unique and diverse genotypes and races are often observed. These and other infrequent groups are termed "Other" in tables in this report and in online maps and charts (www.wheatrust.org).

2021 results - wheat stem rust

In 2021, we received an increasing number of samples compared to previous years (Table 1). Genotyping results of 223 samples from 2021 and 117 samples from 2020, in total representing 21 countries, are presented in Table 2. Race typing was completed for 95 representative isolates from these two years. The races and virulences detected within genetic groups are shown in Table 3 and Table 4. Graphical presentation of results available on www.wheatrust.org. Detailed results for Europe 2016-2021 have been accepted for publication recently, including genetic diversity with respect to race and genotype in local populations in proximity to alternate hosts of Berberis spp. (Patpour et al., 2022). Table 1. Number of stem rust samples and derived isolates in 2021. (D: dead, L: live/recovered).

Count of Running_number	rs	Testing year	Sample_Type	
		20	21	Grand Total
Geographic group	Country	D	L	
Africa, CW Asia	Ethiopia		5	5
	Kenya	10	53	63
	Tanzania	35		35
	Tunisia	27	3	30
Africa, CW Asia Total		72	61	133
Europe	Austria		3	3
	Belgium	2	1	3
	Czech Republic	4	5	9
	Denmark		5	5
	France	17	26	43
	Germany		1	1
	Ireland		4	4
	Italy	19	36	55
	Norway		6	6
	Slovakia	2	8	10
	Slovenia	5	1	6
	Spain	4	3	7
	Sweden		16	16
	Switzerland		10	10
	United Kingdom		4	4
Europe Total		53	129	182
Grand Total		125	190	315

Table 2. Distribution of isolates of *P. graminis* f.sp. *tritici* from 21 countries in 2020 and 2021 in prevalent genetic groups.

Geographic area	Country	SSR_name	2020	2021	Total
Africa, CW Asia	Ethiopia	Clade IV-F		4	4
	Kenya	Clade I	25	57	82
		Clade IV-F		2	2
	Tanzania	Clade I		7	7
		Clade III-B		1	1
		Clade IV-B		3	3
		Clade IV-F		1	1
	Tunisia	Clade III-B		22	22
		Clade IV-B		1	1
		Clade IV-F		2	2
Africa, CW Asia Total			25	100	125
Europe	Austria	Clade III-B	2	2	4
		Clade IV-F	1	1	2
	Belgium	Clade IV-B		3	3
	Czech Republic	Clade III-B	2	2	4
		Clade IV-F		2	2
		Clade VIII	4	1	5
	Denmark	Clade IV-B		3	3
		Clade IV-F		1	1
		Other	2		2
	France	Clade IV-B	6	21	27
		Clade IV-F		16	16
	Germany	Clade IV-B		3	3
		Clade IV-F		1	1
		Clade VIII	1		1
	Hungary	Clade III-B	1		1
		Clade VIII	1		1
	Ireland	Clade IV-B	4		4
	Italy	Clade III-B	13	21	34
		Clade IV-F	11	10	21
	Norway	Clade IV-B		1	1
		Clade IV-F	1	1	2
		Other	1	3	4
	Poland	Clade IV-F		5	5
	Slovakia	Clade III-B	6	3	9
		Clade IV-F	1	1	2
		Clade VIII	3		3
	Slovenia	Clade III-B	16		16
		Clade IV-F	2	1	3
	Spain	Clade IV-B	14	1	15
		Clade IV-F		4	4
	Sweden	Clade IV-B		1	1
		Clade IV-F		2	2
		Other		1	1
	Switzerland	Clade III-B		4	4
		Clade IV-F		6	6
	United Kingdom	Clade IV-B		2	2
Europe Total	<u>_</u>		92	123	215
Grand Total			117	223	340

Table 3. Relationship between genetic groups and prevalent races detected within these in 2020 and 2021. (cf. Table 2); n.a.: not tested.

SSR_name	Race_name	Total
Clade I	РТКТК	5
	РТКТТ	9
	тткѕк	2
	тткут	3
	ттктк	1
	ттктт	13
	n.a.	56
Clade I Total		89
Clade III-B	TTRTF	18
	n.a.	77
Clade III-B Total		95
Clade IV-B	TKRTF	1
	ТКТТЕ	24
	n.a.	38
Clade IV-B Total		63
Clade IV-F	ТККТЕ	19
	n.a.	57
Clade IV-F Total		76
Clade VIII	HFCNC	2
	RFCNC	7
	n.a.	1
Clade VIII Total		10
Other	multiple races	4
	n.a.	3
Other		7
Grand Total		340

Table 4. Correspondence between race name and virulence on common stem rust differential lines.

					Viru	lence	corres	pondi	ng to I	NA diff	erenti	als 1-2	20 (ma	in R-g	ene in	dicated)				
Race_name	Sr5	Sr21	Sr9e	Sr7b	Sr11	Sr6	Sr8a	Sr9g	Sr36	Sr9b	Sr30	Sr17	Sr9a	Sr9d	Sr10	SrTmp	Sr24	Sr31	Sr38	SrMcN
RFCNC	5	21	-	7b	-	-	8a	9g	-	-	-	17	9a	-	10	-	-	-	-	McN
ТККТЕ	5	21	9e	7b	-	6	8a	9g	-	9b	30	17	9a	9d	10	Ттр	-	-	38	McN
TKTTF	5	21	9e	7b	-	6	8a	9g	36	9b	30	17	9a	9d	10	Ттр	-	-	38	McN
тткѕк	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	-	-	31	38	McN
тткѕт	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	-	24	31	38	McN
ттктк	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	Ттр	-	31	38	McN
ттктт	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	Ттр	24	31	38	McN
РТКТК	5	-	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	Ттр	-	31	38	McN
TTRTF	5	21	9e	7b	11	6	8a	9g	36	9b	-	17	9a	9d	10	Ттр	-	-	38	McN
TTTTF	5	21	9е	7b	11	6	8a	9g	36	9b	30	17	9a	9d	10	Ттр	-	-	38	McN

Clade III-B (TTRTF), also termed the 'Sicily race', was in 2021 detected in two African countries, Tanzania and Tunisia, and in five European countries, Austria, Czech Republic, Italy, Slovakia, and Switzerland. Since our first detection of TTRTF in Sicily in 2016, it has been confirmed 9 countries in Europe, and 4 countries in Africa/Asia.

Clade IV-F, containing race TKKTF (Fig. 1), was detected in four African countries, Ethiopia, Kenya, Tanzania and Tunisia, and 13 European countries in 2021. These includes Austria, Czech Republic, Denmark, France, Germany, Italy, Norway, Poland, Slovakia, Slovenia, Spain, Sweden and Switzerland. Previously, Clade IV-F has also been detected in Azerbaijan, Egypt, Iran, Iraq and Tadjikistan in our studies.

Clade IV-B, generally containing two closely related races, TKTTF and TTTTF, was observed in Tanzania and Tunisia and in eight European countries in 2021, including Belgium, Denmark, France, Germany, Norway, Spain, Sweden and the United Kingdom. In clade IV-F in Europe, we observed race TKTTF in all isolates, except one from Spain showing TKRTF. In East Africa, both TKTTF and TTTTF were present.

Clade I (Ug99 group) was only observed in Kenya and Tanzania in 2020 and 2021. So far, this group has not been detected in Europe. Six different races were detected in this clade, of which race TTKTT was the most prevalent (38%) and then PTKTT (29%), the latter being avirulent to Sr21 (Table 3).

Clade VIII, containing two closely related races, HFCNC and RFCNC (predominant), was only observed in Eastern Europe. In contrast to prevalent races, these two races were avirulent to Sr6, Sr9b, Sr9d, Sr9e and Sr38 (Table 4).

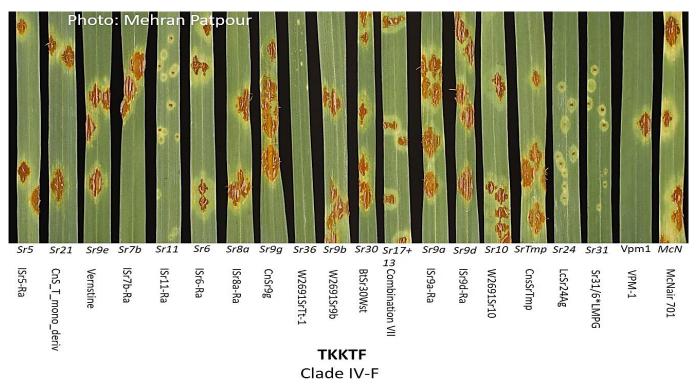


Figure 1. Infection type responses on wheat differential lines of a stem rust race (Clade IV-F), which was widespread in Europe 2021.

2021 results - wheat yellow rust

A total of 574 samples from 24 countries and four continents were handled in 2021, of which 243 were successfully recovered (D: Dead, L: live).

		Testing year	Sample_type	
		20)21	Total
Geographic group	Country	D	L	-
Africa, C&W Asia	Afghanistan	66	22	88
	Ethiopia	74	13	87
	Iraq	33		33
	Kenya	17	36	53
	Tanzania	1	4	5
Africa, C&W Asia Total		191	75	266
Europe	Czech Republic	11	3	14
	Denmark	10	21	31
	Estonia	1	2	3
	France	3	8	11
	Germany	8	10	18
	Hungary		2	2
	Italy	6	10	16
	Latvia		6	6
	Netherlands		5	5
	Norway	10	27	37
	Poland	10	6	16
	Portugal	1	1	2
	Slovakia	3		3
	Spain	8		8
	Sweden	18	18	36
	United Kingdom	11	24	35
Europe Total		100	143	243
South America	Paraguay	4	5	9
	Uruguay	7	17	24
South America Total		11	22	33
South Asia	Nepal	29	3	32
South Asia Total		29	3	32
Grand Total		331	243	574

A total of 259 isolates from Africa, Asia, and South America, and 176 from Europe were successfully genotyped in 2021(Table 6). Race typing was done for 65 isolates for alignment and confirmation of genetic grouping and emergence of new races within these. Common races and virulence phenotypes within groups are shown in Table 7. Graphical presentation of results available on www.wheatrust.org.

First indication of a new incursion of a highly virulent genotype/race (termed PstS16) into East Africa by the end of 2020 was confirmed. In 2021, PstS16 was widespread in farmer's fields and experimental plots in Ethiopia, but not yet detected in neighboring countries (Table 6). An identical race/genotype was widespread in Afghanistan in 2021. Additional experiments at GRRC of leading Ethiopian wheat varieties showed that PstS16 was virulent on additional varieties compared with previous prevalent races such as PstS6 and PstS11.

PstS13 was prevalent in samples from South America, including Paraguay where yellow rust was detected for the first time. In Europe, PstS13 was mainly detected on triticale, but also durum wheat, rye, spelt and bread wheat were affected, whereas this genetic group has not yet been detected in Africa and Asia. Alignment experiments in collaboration with University of Sydney, Australia, confirmed PstS13 in Australia, where it is now one of the most widespread races (Ding et al., 2021).

PstS10 was the most prevalent genetic group in Europe, but since 2018 it was also confirmed in Australia (Ding et al. 2021). At least four races have been detected in PstS10 in Europe, each adapted to local, widely grown wheat varieties, typically named after the wheat varieties where they first caused significant epidemics. In practice, these races differ by quantitative shifts in rust susceptibility of commercial varieties, e.g., from 'resistant' to 'susceptible' or from 'susceptible' to 'extreme susceptible'. This demonstrated the evolutionary capacity within this widely distributed genetic group, which has been prevalent in Europe since 2013. It has not yet been possible to differentiate the new races within PstS10 by molecular techniques nor by standard wheat differential lines.

PstS14 was completely dominating in samples from Iraq in 2021, which represents the first detection of this group in Asia. It was present in low frequencies in Europe, where it has been present since 2016. PstS11 was still prevalent in East Africa, now confirmed in eight countries in East Africa and in the Middle East.

PstS1 and PstS2, which are not distinguishable by SSR genotyping, share race and epidemiological features such as adaptation to warmer temperatures. In Table 6, these two groups are not separated because they have not yet been tested by SCAR markers developed for this purpose.

Samples from Nepal were different from all previously named genetic groups (termed 'Other'), and revealed high pathogen diversity in this area, which is consistent with previous results from the near-Himalayan region in Asia.

			Ye	ar	
Geographic area	Country	SSR name	2020	2021	Total
Africa, C&W Asia	Afghanistan	Other		11	11
		PstS16		54	54
	Ethiopia	PstS11	8	34	42
		PstS16	2	33	35
	Iraq	PstS14		32	32
	Kenya	PstS1/2	4	16	20
		PstS11	12	34	46
	Tanzania	PstS1/2		5	5
Africa, C&W Asia Total			26	219	245
South America	Paraguay	PstS13		2	2
	Uruguay	PstS13		18	18
		PstS7		1	1
South America Total				21	21
South Asia	Nepal	Other		19	19
South Asia Total				19	19

Table 6. Distribution of isolates in P. striiformis from 26 countries in prevalent genetic groups. (Continues next page).

 Table 6. Distribution of isolates in P. striiformis from 26 countries in prevalent genetic groups. (Continued).

			Ye	ar	
Geographic area	Country	SSR name	2020	2021	Total
Europe	Belgium	PstS10	10		10
	-	PstS13	1		1
		PstS7	1		1
	Czech Republic	PstS0	1		1
		PstS10	1	10	11
		PstS13		1	1
		PstS7		1	1
	Denmark	Other		2	2
		PstS10	64	17	81
		PstS13	9	3	12
		PstS15	4		4
		PstS7		1	1
	Estonia	ME2018*		3	3
	France	PstS10	11	6	17
		PstS15	1	1	2
		PstS7	1	1	2
	Germany	PstS10	2	3	5
		PstS13	1	2	3
	Hungary	PstS13	1		1
		PstS7	3	1	4
	Italy	PstS10	8	6	14
		PstS13	2	7	9
		PstS7		1	1
	Latvia	ME2018*	1	1	2
		PstS15		1	1
	Netherlands	PstS10	7	4	11
	Norway	Other	1	1	2
		PstS10	15	25	40
		PstS13	2		2
		PstS7	1	1	2
	Poland	Other		2	2
		PstS10	1	1	2
		PstS13	5	3	8
		PstS7		1	1
	Portugal	PstS10		2	2
	Slovakia	PstS10		1	1
		PstS13		1	1
		PstS14	1	1	2
		PstS7	2		2
	Spain	PstS10	17	5	22
		PstS13	6	1	7
		PstS14		1	1
		PstS7	3		3
	Sweden	PstS10	20	25	45
		PstS13	9	6	15
		PstS7	1		1
		PstS8	1		1
	Switzerland	PstS14	1		1
	United Kingdom	PstS10	9	25	34
		PstS7	1		1
		PstS8	1		1
urope Total			226	174	400
rand Total			252	435	687

GRRC report of yellow and stem rust races 2021, Aarhus University, Denmark www.wheatrust.org

Table 7. Correspondence between genetic groups and prevalent races of *P. striiformis* sampled from epidemic sites since 2000, Global Rust

 Reference Center.

	r prevalent races and gen	etic groups in yellow rust - GRRC, March 2022	
Genetic group	Race	Virulence phenotype ^b	Prevalence in geographical region
PstS0	Brigadier	1,2,3,-,-,-,9,-,-,17,-,25,-,-,AvS,-	Europe
	Brigadier,v4	1,2,3,4,-,-,-,9,-,-,17,-,25,-,-,-,AvS,-	Europe
	Madrigal_Lynx	1,2,3,-,-,6,-,-,9,-,-,17,-,25,-,-,-,AvS,-	Europe
	Madrigal_Lynx,v4	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,-,-,AvS,-	Europe
	Robigus	1,2,3,4,-,-,-,9,-,-,17,-,25,-,32,-,AvS,-	Europe
	Solstice_Oakley	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,32,-,AvS,-	Europe
	Tulsa	-,-,3,4,-,6,-,-,-,-,-,25,-,32,-,AvS,-	Europe
PstS1	PstS1/2 ^a	-,2,-,-,6,7,8,9,-,-,-,25,-,-,AvS,-	North America, Australia
	PstS1/2,v1	1,2,-,-,-,6,7,8,9,-,-,-,25,-,-,-,AvS,-	East Africa
	PstS1/2,v1,v27	1,2,-,-,-,6,7,8,9,-,-,-,25,-,-,-,AvS,-	East Africa
PstS2	PstS1/2	-,2,-,-,-,6,7,8,9,-,-,-,25,-,-,AvS,-	East Africa, West Asia, South Asia
	PstS1/2,v1	1,2,-,-,-,6,7,8,9,-,-,-,-,25,-,-,-,AvS,-	East Africa
	PstS1/2,v3	-,2,3,-,-,6,7,8,9,-,-,-,25,-,-,AvS,-	East Africa
	PstS1/2,v27	-,2,-,-,6,7,8,9,-,-,-,25,27,-,-,AvS,-	East Africa, West Asia, North Africa
	PstS1/2,v1,v27	1,2,-,-,-,6,7,8,9,-,-,-,25,27,-,-,AvS,-	East Africa, West Asia
	PstS1/2,v3,v27	-,2,3,-,-,6,7,8,9,-,-,-,25,27,-,-,AvS,-	East Africa
	PstS1/2,v10	-,2,-,-,-,6,7,8,9,10,-,-,24,25,-,-,-,AvS,-	East Africa, West Asia
	PstS1/2,v10,v27	-,2,-,-,-,6,7,8,9,10,-,-,24,25,27,-,-,AvS,-	West Asia
	PstS1/2,v3,v10,v27	-,2,3,-,-,6,7,8,9,10,-,-,24,25,27,-,-,AvS,-	East Africa
PstS3	PstS3	-,(2),-,-,-,6,7,8,-,-,-,-,25,-,-,-,AvS,-	Europe, Asia
	PstS3,v1	1,(2),-,-,-,6,7,8,-,-,-,-,25,-,-,AvS,-	Asia
PstS4	Triticale2006	-,2,-,-,-,6,7,8,-,10,-,-,24,-,-,-,-,-	Europe
PstS5	PstS5	1,2,3,4,-,6,-,-,9,-,-,-,25,-,32,-,AvS,Amb	Central Asia
	PstS5,v17	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,32,-,AvS,Amb	Central Asia, South Asia
PstS6	PstS6	1,2,-,-,-,6,7,-,9,-,-,17,-,-,27,-,-,AvS,-	East Africa, Central Asia, South Asia
PstS7	Warrior	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,Amb	Europe, North Africa
PstS8	Kranich	1,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,-,AvS,Amb	Europe
PstS9	PstS9	1,2,3,4,-,6,-,-,9,-,-,-,25,27,32,-,AvS,Amb	Central Asia, South Asia
	PstS9,v17	1,2,3,4,-,6,-,-,9,-,-,17,-,25,27,32,-,AvS,Amb	Central Asia
PstS10	Warrior(-)	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-	Europe, North Africa
	Kalmar	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-	Europe
	Benchmark	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-	Europe
	Amboise	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-	Europe
PstS11	PstS11	-,2,-,(4),-,6,7,8,-,-,-,17,-,-,27,32,-,AvS,-	Central and West Asia, East Africa
PstS12	Hereford	-,2,3,-,-,6,7,8,-,-,17,-,25,-,32,-,AvS,-	Europe
PstS13	Triticale2015	-,2,-,-,-,6,7,8,9,-,-,-,-,-,AvS,-	Europe, South America, West Asia
	Triticale2015,v10	-,2,-,-,-,6,7,8,9,10,-,-,24,-,-,-,AvS,-	Europe
PstS14	PstS14	-,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,(Sp),AvS,-	Europe, North Africa, West Asia
PstS15	PstS15	1,2,3,-,-,6,7,-,9,-,-,17,-,25,-,32,-,AvS,Amb	Europe
	1 31313		

a) PstS1 and PstS2 not distinguishable by race and SSR (but SCAR). b) Figures and symbols designate virulence and avirulence (-) corresponding to yellow rust resistance genes: Yr1, Yr2, Yr3, Yr4, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr25, Yr27, Yr32, and the resistance specificity of Spalding Prolific (Sp), Avocet S (AvS) and Ambition (Amb), respectively. Kalmar, Benchmark and Amboise are races in PstS10, which can only be distinguished by these varieties.

Submission and preparation of samples

Samples of rust infected wheat are submitted according to an import permit issued by GRRC valid for one country and one year in compliance with the Nagoya Protocol about control, access and utiliza-

tion of genetic resources. The details of sampling preparation are available at http://wheatrust.org/submission-of-isolates/; a video demonstrates the ideal sampling procedures. Bilateral agreement with private/public enterprises is also possible. Since 2011, GRRC has accepted samples of both yellow rust, leaf rust and stem rust.

Several cycles of spore multiplication were generally made to obtain sufficient amount of spores for storage and race analyses. In case of signs of multiple genotypes/races within a sample, these were generally sub-cultured for purification according to standard GRRC procedures (Hovmøller et al. 2017), open-access for downloads for non-commercial and educational purposes. The SSR genotyping of isolates based on DNA extraction from infected leaves (single lesions) was highly successful for appropriate discrimination of genetic groups, following the procedures of Thach et al. 2016.

Supporting litterature

- Ali et al., 2017. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages. *Frontiers in Plant Science*, Vol. 8, 1057, 06.2017.
- Ding Y et al. 2021. Incursions of divergent genotypes, evolution of virulence and host jumps shape a continental clonal population of the stripe rust pathogen Puccinia striiformis. Molecular Ecology, 20.09.2021.
- Hovmøller et al. 2017: Race Typing of *Puccinia striiformis* on Wheat. In: *Wheat Rust Diseases: Methods and Protocols*, ed. S. Periyannan. Springer, p. 29-40. Downloading accepted for non-commercial and educational purposes.
- Fernández-Gamarra MA, P. Chávez, L. Cardozo Téllez, R. Scholz, N. Bobadilla, M. J. Vargas, L. N. Talavera Stefani, G. A. Enciso-Maldonado, T. Thach, M. S. Hovmøller and M. M. Kohli 2022: First report of stripe rust (*Puccinia striiformis* f.sp. *tritici*) in wheat (*Triticum aestivum*) in Paraguay. Plant Disease (*accepted for publication April 2022*).
- Patpour M., M. S. Hovmøller, J. Rodriguez-Algaba, B. Randazzo, D. Villegas, V. P. Shamanin, A. Berlin, K. Flath, P. Czembor, A. Hanzalova, S. Sliková, E. S. Skolotneva, Y. Jin, L. Szabo, K.J.G. Meyer, R. Valade, T. Thach, J. G. Hansen, A. F. Justesen (2022). Wheat stem rust back in Europe: Diversity, prevalence and impact on host resistance. Frontiers in Plant Science (accepted for publication May 2022)
- Szabo, L., Olivera Firpo, P.D., Wanyera, R., Visser, B., and Jin, Y. 2022. Development of a diagnostic assay for differentiation between genetic groups in clades I, II, III and IV of *Puccinia graminis* f. sp. tritici. Plant Disease (*in press*).

Acknowledgements

Submission of samples of rust infected plant material in 2021 was facilitated by a large number of collaborators from multiple organisations and countries (Table 8). Sampling in Africa was coordinated by Dave Hodson (CIMMYT); sampling in EC-VCU network trials was coordinated by Valérie Cadot (Geves), France. Samples for alignment of methodologies and results between European rust diagnostic laboratories were kindly privided by collaborators from NIAB (UK), INRAE (France), JKI (Germany) and IHAR (Poland). Additional sampling from several areas was based on bilateral agreements, e.g., Jordbruksverket, Sweden (Gunilla Berg), and Norwegian University of Life Sciences, Norway (Morten Lillemo). Les Szabo, CDL Minnesota, USDA, provided reference DNA samples of previously defined genetic groups of wheat stem rust based on SNP analyses. Handling and recovery of incoming samples and inoculations by Ellen Jørgensen, production of healthy plants by Jakob Sørensen, and DNA/PCR work by Janne Holm Hansen is greatly acknowledged. The activities were funded by a variety of organisations and research councils: Race typing and genotyping of international (non-European) samples were facilitated by Melinda & Bill Gates Foundation and the UK Department for International Development (DFID). Analyses of European samples was supported by European Union's Horizon 2020 research and innovation programme under grant agreement No 773311 (RustWatch), Jordbruksverket, Sweden, and the Research Council of Norway (Hveterust).

 Table 8. People submitting samples of rust infected leaves/stems of cereals 2021 (Continues next page).

Country	Collector	Yellow rust	Stem rust		Country	Collector	Yellow rust	Ste ru:
Afghanistan	Abdul Bari	х			Austria	Michael Oberforster		х
	Ahmadi Nabizada	х				Monika Opalo		х
	Baryalai Malekzada	х			Belgium	Pierre Hellin		x
	G. Ghanizada	х			Czech Republic	Alena Hanzalová		х
	Saifudin Safi	х			Denmark	Anne Ladegaard	х	
	Shakib Ataee	х				Ellen Jørgensen	х	
	Shamsullhaq	х				Finn Borum	х	
	Mirwais Amirzai	х				Lise Nistrup Jørgensen	х	2
Ethiopia	Anduamlak A	х				Martin Clausen	х	
	Asela Kesho	х				Ole Harild	х	
	Ayele Badebo	х				Peter Spies		
	Belachew Bekele	х				Rikke B. Heinfelt	x	
	Dagne Abu	х				Susanne Sindberg	x	:
	Dereje Amare	х			Estonia	Max Kurg	x	
	Getahun T	х			France	Alexandre Klein		:
	Girma Abebe	x				Anne-Lise Boixel		
	Girma Teshome	x				Auberi Avalle		:
	Jemal T	x				Audrey Remont-warin		:
	Kabna Asefa	x				Cédric Picard		
	Kitessa G	x				Christophe Jeudi		
	Meguanint Andualem	x				Christophe Michelet		
	Solomon B	x	x			Clément Dusserre		
	Tamene	x				Corentin Picard		
	Tamirat N	x	x			Courbet		
	Tekilu	x				Damien Coulon		
	Tilahun Bayisa	x		a	1	Emmanuel Heumez		
	Tsegaab Tesfaye	x		Furone		Fanny Savaete		
	Yared Tesfaye	x		Ē	5	Franck Gaudichau		
	Yitagesu Tadesse	x				Jean-Charles Talbourdet		
	Yoseph Alemayehu	x				Jean-Philippe Maigniel	x	
	Zerihun Eshetu	x				Jérôme Enjalbert	~	
	Zerihun Tadesse	x				Joelle Daucourt		
Iraq	Dheyaa Mohsin Ali	x				Lefevre		
naq	Emad Al-Maaroof	x				Marine Henry		
	Sarkawt Salih	x				Pascal Girardeau		
	Nabaz Rashid	x				Romain Bandini		
Kenya	Zennah Kosgey	x	x			Romain Valade		
Tanzania	Salome Munissi	x	x			Sabine Snyder		
Tunisia	Amor Yahyaoui	^	x			Sandrine Longuet		
Tumbia	Sarrah Ben M'Barek		x			Solène Barrais	x	
	Wided Abdedeyam		x			Stéphane Porrez	^	:
Paraguay	Marta Fernandez	x	Â			Sylvain Chombart		
Uruguay	R. García	x				Sylvain Gaubrie		
Oluguay	Venancio Riella	x				Thierry Demarquet		
	F. Pereira	x				Valerie Dufayet		
Nepal	Basistha Acharya	x			Germany	Andreas Jacobi		
inchai					Serillariy	Bärbel Liebherr		
	Bhajuman Maharjan	x					x	
	Dhurba Thapa	X				Claudia Meyer		
	Khem Pant	x				Kathlen Spät		
	Laxman Aryal	x				Monika Spiler		
	Prem Bahadur Magar	X				S. Hagen	x	
	Sunita Adhikari	х				Thomas Zschaeckel	x	
	Suraj Baidya	х				Uta Liesenberg	x	

 Table 8. People submitting samples of rust infected leaves/stems of cereals 2021. (Continued).

	Country	mitting samples of rust infected Collector	Yellow	Stem
	country	Collector	rust	rust
		Victoria Hasler		х
		Volker Heiden	x	
	Hungary	Bernat Poos	х	
	Italy	Alessandro Infantino		х
		Andreina Belocchi		х
		Angela Iori		х
		Anna Maria Mastrangelo		х
		Biagio Randazzo	х	х
		Daniela Marone	х	х
		Eder Groli		х
		Elisabetta Mazzucotelli		х
		Fabrizio Quaranta		х
		Giuseppina Goddi		X
		Lucio Salafia		x
		Marco Martelli Marco Nocentini	v	x
		Marco Nocentini Mauro Fornara	х	x x
		Paolo De Franceschi		x
		Stefania Licciardello		x
		Virgilio Balmas		x
	Latvia	Lïga Feodorova-Fedotova		
	Netherlands	L. van den Brink	x	
	Norway	Andrea Ficke	х	
		Chloé Grieu	x	
be		Inga Holt	х	
Europe		Ingvild Evju	х	
ш		Min Lin	х	х
		Morten Lillemo	x	х
		Rune Karlsen	x	
	Poland	Pawel Czembor	x	х
	Portugal	Asmae Jlilat	x	
	lortugal	Cláudia Rato da Silva		
	a		х	
	Slovakia	Svetlana Šliková	х	х
	Slovenia	Ales Kolmanic		х
	Spain	Dolors Villegas	х	
		Fernando Martinez-Moreno	х	х
		Roser Sayeras		х
	Sweden	Alf Djurberg	x	
		Anna von Heideken	x	
		Annika Sohlman	x	
		Anton Hampl	х	
		Ebba Hellstrand	х	
		Elin Almén	х	
		Eva mellqvist	х	
		Gunilla Berg	х	
		Lars Johansson	x	
		Lina Norrlund	x	
		Linda Geijersstam	x	

Country	Collector	Yellow rust	Stem rust
	Louise Aldén	х	
	Lovisa Eriksson	x	
	Mahboobeh Yazdani		x
	Mahbubjon Rahmatov		x
	Oskar Gustafsson	х	
	Petter Gustafsson	x	
	Robert Dinwiddie	х	
	Therese Christerson	x	
Switzerland	Nicole Togni		x
United Kingdom	Amelia Hubbard	x	
	Clare Lewis		x
	Sarah Wilderspin	х	

х