

GRRC annual report 2019: Stem- and yellow rust genotyping and race analyses

Mogens Støvring Hovmøller, Mehran Patpour, Julian Rodriguez-Algaba, Tine Thach, Annemarie Fejer Justesen & Jens Grønbech Hansen, 13 March, 2020.

Corresponding author: mogens.hovmoller@agro.au.dk

Key highlights yellow rust

- Genetic group PstS11 was detected in Turkey and Uganda, so it is now prevalent in at least six countries in East Africa and the Middle East.
- A new genotype (and a unique race), first detected in Egypt (2018) and provisionally termed ME2018, was observed on both bread wheat and durum wheat in Turkey.
- At least two new races were detected in PstS10, the most prevalent genetic group in Europe. The new races were adapted to local, widely grown wheat varieties, and only detectable by including these varieties in the race testing.
- A new race with *Yr10*-virulence was detected in PstS13. Isolates of this genetic group has severely affected triticale (northern Europe), durum wheat (southern Europe) and bread wheat (South America).
- Genetic group PstS7 with the original Warrior race was less prevalent, but spreading to new areas, whereas PstS8 (with the Kranich race) was observed in few cases only.
- Additional groups were detected in several countries, e.g. PstS15 consisting of a single genotype and race, which was first observed in France and this year also in Denmark.

Key highlights stem rust

- Clade III-B (TTRTF, the "Sicily race"), widespread in Italy since 2016, was detected in Spain, Tunisia and Iran.
- Clade IV-F, containing race TKKTF, was widespread in Europe, Africa and the Middle East, in total 9 countries in this study.
- Clade I (Ug99) and associated races were not detected outside Africa except in Iran.
- Clade IV-B, containing the races TKTTF and TTTTF, was detected in Africa and southern Europe.
- Multiple races with unusual virulence combinations were observed on cereals in local areas in Sweden and Spain, where the alternate host, *Berberis vulgaris*, is present. High genetic diversity was confirmed by genotyping.
- Genotyping provided high-resolution results for genetic grouping of isolates, which to a large extent corresponded with race groups based on virulence phenotyping.

Summary of SSR genotyping and race phenotyping results from the GRRC (2008-2019) is available online (http://www.wheatrust.org/), including an updated table showing the relationship between races and genetic groups in yellow rust. Table 4 presents the same relationship for stem rust based on samples presented in this report.

This report presents molecular genotyping and race typing results from the GRRC based on samples of rust infected wheat and triticale collected in 2018 and 2019 across four continents, i.e., Europe, Asia, Africa and South America. For the first time, the report comprises results for wheat stem rust *P. graminis*

Report of stem and yellow rust genotyping 2019: GRRC, Aarhus University, Denmark www.wheatrust.org

f.sp. *tritici* as well as yellow/stripe rust (*Puccinia striiformis*). The testing of additional samples from 2019 is ongoing with emphasis on additional race testing of representative isolates from existing and new genetic groups.

In 2019, a total of 672 samples and derived isolates from 21 countries were handled. Each sample generally consisted of multiple rust infected leaves or stems. Representative leaves/stems were selected for alive spore recovery, and in parallel genotyping based on the incoming sample (Table 1, Table 2). More than 500 alive isolates of yellow and stem rust were recovered based on submissions in 2019.

The genotyping was generally based on Simple Sequence Repeat (SSR) analyses of incoming samples of rust infected plant material without prior recovery, whereas the race phenotyping was based on bioassays of differential wheat lines using spore samples of recovered, pure isolates grown under strict experimental conditions (Hovmøller et al. 2017). In case that multiple genotypes were detected in an incoming sample and results were inconclusive, additional tests were based on purified samples.

Nomenclature of races and genetic groups

Genetic groups of yellow rust are named Pst followed by a digit. Race variants are designated by the additional virulence observed or (-) in case a new variant had fewer virulences than the first defined race within the considered lineage. Race names already adopted by the farming community in Europe are maintained, e.g., "Warrior" and "Kranich", which are named according to the wheat variety where they caused the first confirmed epidemic outbreak. A comprehensive justification and rationale for the naming of significant *P. striiformis* races and genetic groups has been published (Ali et al. 2017) and an updated summary is available on the GRRC website. The genotypic grouping of stem rust is according to Olivera Firpo et al. (2017) and Olivera et al. (2019), and is based on detailed alignment of the present SSR genotyping results and SNP results from the Cereal Disease Lab, Minnesota, USA; the race grouping is based on 20 internationally agreed wheat lines differentiating virulence for the wheat stem rust fungus (Jin et al., 2008).

In yellow rust, we observed a strong correlation between genetic groups and race phenotypes for most sampling areas, similarly, most races of wheat stem rust were associated with specific genetic groups ('clades'). In few cases, the same race phenotype of stem rust was present in several genetic groups, reflecting that additional wheat lines are needed to differentiate races of stem rust in more detail.

			2018					
Geographic area	Country	Dead	Recovered	Total	Dead	Recovered	Total	Grand Total
Africa, CW Asia	Egypt	21	2	23				23
	Eritrea	7	12	19				19
	Ethiopia		4	4				4
	Iran	25	22	47		12	12	59
	Kenya	9	68	77	1	61	62	139
	Morocco					2	2	2
	Rwanda		13	13				13
	Tanzania	1	27	28				28
	Tunisia					8	8	8
	Uganda				8	37	45	45
Africa, CW Asia Total		63	148	211	9	120	129	340
Europe	Czech Republic		5	5				5
	Denmark	1		1		9	9	10
	France					1	1	1
	Germany					2	2	2
	Hungary					1	1	1
	Italy	4	60	64	1	55	56	120
	Poland		14	14				14
	Slovakia		14	14				14
	Spain				2	74	76	76
	Sweden	8	29	37	2	5	7	44
Europe Total		13	122	135	5	145	150	285
Grand Total		76	270	346	14	265	279	625

Table 1. Number of stem rust samples and derived isolates (*P. graminis* f.sp. *tritici*) handled in 2018-2019.

			2019	
Geographic area	Country	Dead	Recovered	Grand Total
Africa, C&W Asia	Ethiopia	13	14	27
	Iran	2	3	5
	Kenya	1	27	28
	Turkey	9	13	22
	Uganda	12	4	16
Africa, C&W Asia Total		37	61	98
Europe	Belgium		16	16
	Czech Republic	3		3
	Denmark	8	49	57
	France	2	16	18
	Germany	6	16	22
	Hungary	2	6	8
	Italy	7	53	60
	Latvia	19	2	21
	Netherlands		4	4
	Norway		5	5
	Poland		5	5
	Slovakia	3	3	6
	Spain	6	38	44
	Sweden	11	15	26
Europe Total		67	228	295
Grand Total		104	289	393

Table 2. Number of yellow rust samples and derived isolates (*P. striiformis*) handled in 2019.

A more comprehensive documentation of the nomenclature of stem rust races and genotypes, and the underlying experimental procedures are available on the GRRC website, where new mapping tools were implemented recently. Geographical location of races/genotypes is shown on maps in case such information has been provided.

Yellow rust was severe on wheat in many areas in northern Europe in 2019, in particular in the absence of effective host resistance and/or fungicide sprays. Photo: Ghita Nielsen, SEGES, Denmark.

2018-2019 results - wheat stem rust

A total of 348 samples from 19 countries and four continents were successfully genotyped (Table 3), and 164 of these were also race typed.

Table 3. SSR genotyping of samples of *P. graminis* f.sp. *tritici* collected in 2018 and 2019. Results are shown as number of isolates within a genetic group. Significant races within clades are shown in Table 4 and virulences in Table 5. Graphical presentation of results available on www.wheatrust.org.

Geographic group	Country	Genetic group	2018	2019	Total
Africa, CW Asia	Egypt	Clade IV-E.2	8		8
		Clade IV-F	2		2
	Egypt Total		10		10
	Eritrea	Clade III-B	6		6
	Eritrea Total		6		6
	Ethiopia	Clade IV-B	2		2
	Ethiopia Total		2		2
	Iran	Clade I		1	1
		Clade III-B		6	6
		Clade IV-F	12		12
	Iran Total		12	7	19
	Kenya	Clade I	39	54	93
		Clade IV-B	2	2	4
	Kenya Total		41	56	97
	Morocco	Clade IV-B		2	2
	Morocco Total			2	2
	Rwanda	Clade I	5		5
	Rwanda Total		5		5
	Tanzania	Clade I	9		9
		Clade IV-B	7		7
	Tanzania Total		16		16
	Tunisia	Clade III-B		3	3
		Clade IV-F		5	5
	Tunisia Total			8	8
	Uganda	Clade I		21	21
		Clade IV-B		5	5
		Clade IV-F		1	1
	Uganda Total			27	27
Africa, CW Asia Total			92	100	192
Europe	Czech Republic	Other	4		4
	Czech Republic Total		4		4
	Denmark	Clade IV-F		6	6
	Denmark Total			6	6
	France	Clade IV-F		1	1
	France Total			1	1
	Hungary	Other		1	1
	Hungary Total			1	1
	Italy	Clade III-B	20	16	36
		Clade IV-B	6		6
		Clade IV-F	12	23	35
	Italy Total		38	39	77
	Poland	Clade IV-E.2	3		3
		Clade IV-F	2		2
	Poland Total	Other	5		5
	Slovakia	Other	8		8
	Slovakia Total		8		8
	Spain	Clade III-B		4	4
		Clade IV-B		2	2
	1	Clade IV-F		4 32	4 32
		0.1		1 27	32
		Other			
	Spain Total			42	42
	Sweden	Other Other	12		42 12
			12	42	42 12 12
Europe Total Grand Total	Sweden				42 12

SSR_name	Race_name	Number of observations
Clade I (Ug99)	TTKSK	4
	TTKST	11
	ТТКТК	6
	ТТКТТ	39
	-	69
Clade I Total		128
Clade III-B	TTRTF	31
	-	24
Clade III-B Total		55
Clade IV-B	TKTTF	9
	TTTTF	13
	-	6
Clade IV-B Total		28
Clade IV-E.2	TKKTF	2
	-	9
Clade IV-E.2 Total		11
Clade IV-F	TKKTF	32
	-	37
Clade IV-F Total		69
Other	LKMNC	2
	RFCNC	8
	RFCPC	1
	Other	6
	-	39
Other Total		57
Grand Total		348

Table 4. Relationship between geneticgroups and prevalent races detected withinthese in 2018-2019 (cf. Table 2)

- not tested

Table 5. Correspondence between race name and virulence on common stem rust differential lines.

					Vir	ulen	ce cori	respor	nding t	o NA d	differe	ntials	1-20 (r	nain R	-gene	indicate	ed)			
Race_name	Sr5	Sr21	Sr9e	Sr7b	Sr11	Sr6	Sr8a	Sr9g	Sr36	Sr9b	Sr30	Sr17	Sr9a	Sr9d	Sr10	SrTmp	Sr24	Sr31	Sr38	SrMcN
LKMNC	5	-	-	-	-	6	8a	9g	36	-	-	17	9a	-	10	-	-	-	-	McN
RFCNC	5	21	-	7b	-	-	8a	9g	-	-	-	17	9a	-	10	-	-	-	-	McN
RFCPC	5	21	-	7b	-	-	8a	9g	-	-	-	17	9a	-	10	Ттр	-	-	-	McN
TKKTF	5	21	9e	7b	-	6	8a	9g	-	9b	30	17	9a	9d	10	Ттр	-	-	38	McN
TKTTF	5	21	9e	7b	-	6	8a	9g	36	9b	30	17	9a	9d	10	Ттр	-	-	38	McN
TTKSK	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	-	-	31	38	McN
TTKST	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	-	24	31	38	McN
ттктк	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	Ттр	-	31	38	McN
ТТКТТ	5	21	9e	7b	11	6	8a	9g	-	9b	30	17	9a	9d	10	Ттр	24	31	38	McN
TTRTF	5	21	9e	7b	11	6	8a	9g	36	9b	-	17	9a	9d	10	Ттр	-	-	38	McN
TTTTF	5	21	9e	7b	11	6	8a	9g	36	9b	30	17	9a	9d	10	Ттр	-	-	38	McN

Clade III-B, consisting of a single race, a.k.a. the "Sicily race", was detected for the first time in three additional countries, i.e., Spain, Tunisia and Iran. In addition to the virulences shown in Table 5, this race is virulent on several durum wheat varieties (*Sr13b*) and possesses additional virulence to *Sr50* shown by higher than usual infection type for this gene (Patpour et al., 2019).

Clade IV-F, containing a single race (TKKTF) in this study, was detected in nine countries in Europe, Africa and West Asia, i.e., Egypt, Iran, Tunisia, Uganda, Denmark, France, Italy, Poland, and Spain. This widespread occurrence was quite surprising since isolates of this genetic group have only been reported and defined recently (Olivera Firpo et al., 2017, 2019), In fact, the same race phenotype, TKKTF, was also observed in clade IV-E.2 in Poland, and elsewhere in the past.

Clade IV-B was detected in Africa and southern Europe. It contained two closely related races, TKTTF and TTTTF, which only differ by virulence to *Sr11*. In this study, TTTTF was not detected outside Africa.

Clade I (Ug99) contained as expected several closely related races, which are difficult to separate by standard genotyping techniques. All samples, except one, were collected in East Africa, the exception originating from Iran, where Ug99 was detected several years ago.

Multiple races were derived from wheat, barley and rye in Sweden and Spain, in both cases sampled in local areas in proximity to the alternate host, *Berberis vulgaris*. Many of the races were characterized by avirulence on multiple differential lines, and many of the isolates were generally poorly adapted to wheat. The unusual virulence patterns of selected isolates are currently being investigated in more detail, in combination with rust susceptibility profiles of commercially important wheat varieties in Europe and elsewhere. The high genetic diversity was confirmed by a high number of unique and diverse genotypes.

2019 results – wheat yellow rust

A total of 285 samples from 18 countries and three continents were successfully genotyped (Table 6). Race typing was done for 65 isolates for alignment and confirmation of genetic grouping and emergence of new races within genetic groups. The number of samples from Africa, Asia and South America was significantly lower than in 2018, reflecting a decrease in incoming samples from these areas in 2019.

PstS11 is now confirmed in six countries in Africa and the Middle East, i.e., Ethiopia, Kenya, Rwanda, Tanzania, Uganda and Turkey (Table 6). PstS11 was first detected in Afghanistan (2012) after which it spread to neighboring countries. So far, only a single race has been confirmed in PstS11 (virulence phenotype: -,2,-,4,-,6,7,8,-,-,-,17,-,-,27,32,-,AvS,-). The virulence of a representative set of recent PstS11 isolates from Turkey and East Africa is being investigated at present time. The rapid spread across wide areas, and associated rust epidemics, including previously resistant varieties in affected areas, demonstrate the potential risks associated with this race/genotype, and evolution of additional virulence can be expected.

A new genotype in the Middle East (provisionally termed ME2018), first detected in dead samples from Egypt (2018), was observed in 2019 at several locations in Turkey. The Turkish samples were collected from durum wheat as well as bread wheat. Confirmation of the race phenotype is ongoing.

PstS13 and PstS14 were also detected in Turkey in 2019. Both groups have been detected in multiple countries and continents in recent years, and in 2019 a new *Yr10*-virulent variant in PstS13 was detected in Europe. PstS13 isolates are highly aggressive on several crop types, e.g., multiple triticale varieties (northern Europe and South America), durum wheat (southern Europe) and multiple spring wheat varieties (South America) resulting in significant yield losses (Carmona et al., 2019). PstS14 is highly dominant in Morocco, and otherwise present in multiple European countries, but often in low frequencies.

PstS10 was the most prevalent group on bread wheat in Europe, so far dominated by a single race (virulence phenotype: 1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-) (Table 6). However, in recent years, new races adapted to local, widely grown wheat varieties have emerged within PstS10, resulting in quantitative shifts in rust susceptibility of such varieties, e.g., from 'resistant' to 'susceptible' or from 'susceptible' to 'extreme susceptible'. It has not been possible to diagnose such new races within PstS10 by SSR genotyping nor by standard wheat differential lines, so far only by including the varieties in question into the differential set, e.g., varieties Kalmar and/or Benchmark. However, correct diagnosis of races based on such quantitative differences requires strict and well-defined experimental conditions. In terms of virulence, the races within PstS10 are similar to the only race detected so far in PstS7 (Warrior), except for the resistance specificity in the varieties Warrior (UK) and Ambition (DK).

The Warrior race was detected in Europe but often in low frequency, in Europe. Likewise, the PstS8 group (containing the Kranich race) has become less frequent in most areas of Europe. A new race in a new unique genetic group, termed PstS15, was detected in France in 2017, 2018 and 2019 and in 2019 also in Denmark. The significance of this race in terms of potential shifts in rust susceptibility is being investigated via ongoing research activities.

Table 6. SSR genotyping of samples of *P. striiformis* in 2018 and 2019. Results shown as number of isolates within genetic groups, see Table 7 showing significant races and virulences within each group.

Geographic group	Country	SSR_name	2018	2019	Grand Total
Africa, C&W Asia	Afghanistan Egypt	Other PstS1/PstS2 ^{a)}	8		8
	LEYPI	ME2018 b)	2		2
	Eritrea	Other	5		5
	Ethiopia	PstS11	28	24	52
		PstS1/PstS2 ^{a)} Other	3	1	3
	Iran	PstS1/PstS2 ^{a)}	3	1	3
		Other		4	4
	Kenya	PstS11	30	14	44
	Morocco	PstS1/PstS2 a) PstS14	<u>9</u> 54	3	<u> </u>
	Rwanda	PstS14 PstS11	3		3
		PstS1/PstS2 a)	6		6
	Tanzania	PstS11	3		3
	Turkey	PstS1/PstS2 a) PstS11	3	5	3
	Титкеу	PstS13		2	2
		PstS14		5	5
		ME2018 b)		4	4
	Uganda	PstS11 PstS1/PstS2 a)		3 4	3 4
		PstS1/PstS2 */ PstS6		6	6
	Uzbekistan	PstS9	30		30
frica, C&W Asia Total			196	75	271
rope	Austria	PstS7	2 10	15	2
	Belgium	PstS10 PstS13	10	15 1	<u>25</u> 1
		PstS7	1	<u> </u>	1
	Czech Republic	PstS10	2	3	5
		PstS7	8		8
	Denmark	PstS7 PstS10	<u>1</u> 34	32	<u> </u>
	Deminark	PstS13	2	12	14
		PstS14	4		4
		PstS15	2	4	4
		PstS7 PstS8	2	1	2
	Estonia	PstS7	2	1	2
	France	PstS10	4	12	16
		PstS13	1		1
		PstS15	1 4	1 3	2 7
	Germany	PstS7 PstS10	2	4	6
		PstS13	6	3	9
		PstS8		1	1
	Hungary	PstS7		4	4
	Italy	PstS10 PstS13	8	<u>3</u> 24	<u>3</u> 32
		PstS13	0	1	1
		PstS14	1	1	2
		PstS2	4.6	1	1
		PstS4 PstS7	16	2	<u> </u>
	Latvia	Other	1	۷	1
		PstS10		1	1
		PstS14	9	18	27
	Netherlands	PstS7 PstS10	3	1	4
	iverneriands	PstS10 PstS7	3	3	<u> </u>
	Norway	PstS10	1	5	6
		PstS7	1	-	1
	Poland	Other Det 510	1		1
		PstS10 PstS13	2 4		2 4
	Slovakia	PstS13 PstS10	1	2	3
		PstS14	1	1	2
	0	PstS7	2	1	3
	Spain	PstS10 PstS13	<u> </u>	10 11	20 15
		PstS13 PstS14	6	6	15
		PstS14		1	1
		PstS7	4		4
	Sweden	PstS10 PstS13	<u>23</u> 4	<u>16</u> 5	<u>39</u> 9
		PstS13 PstS7	3	5	3
		PstS8	4		4
	Ukraine	PstS13	4		4
urope Total		D 1010	202	210	412
America	Argentina	PstS13 PstS7	<u>28</u> 3		28
	Chile	PstS13	18		18
. America Total			49		49
. Asia	Bhutan	Other	6		6
	Pakistan	Other	23 29		23 29
. Asia Total					

^{a)} These two aggressive strains are only distinguishable by SCAR markers (Walter et al. 2016), which have not yet been applied on 2018-2019 samples ^{b)} Temporary designation for a unique genotype first detected in Egypt 2018

Report of stem and yellow rust genotyping 2019: GRRC, Aarhus University, Denmark www.wheatrust.org

Table 7. Correspondence	between geneti	c groups and	prevalent	races of	P. striiformis	sampled from
epidemic sites since 2000,	Global Rust Ref	erence Center	r, January	2020.		

Genetic group	Race	Virulence phenotype*	Prevalence in geographical region
PstS0	Brigadier	1,2,3,-,-,-,-,9,-,-,17,-,25,-,-,-,AvS,-	Europe
	Brigadier,v4	1,2,3,4,-,-,-,9,-,-,17,-,25,-,-,-,AvS,-	Europe
	Madrigal_Lynx	1,2,3,-,-,6,-,-,9,-,-,17,-,25,-,-,-,AvS,-	Europe
	Madrigal_Lynx,v4	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,-,-,AvS,-	Europe
	Robigus	1,2,3,4,-,-,-,9,-,-,17,-,25,-,32,-,AvS,-	Europe
	Solstice_Oakley	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,32,-,AvS,-	Europe
	Tulsa	-,-,3,4,-,6,-,-,-,-,-,25,-,32,-,AvS,-	Europe
PstS1	PstS1	-,2,-,-,-,6,7,8,9,-,-,-,25,-,-,-,AvS,-	North America, Australia
	PstS1,v1	1,2,-,-,-,6,7,8,9,-,-,-,25,-,-,AvS,-	East Africa
	PstS1,v1,v27	1,2,-,-,6,7,8,9,-,-,-,25,27,-,-,AvS,-	East Africa
PstS2	PstS2	-,2,-,-,-,6,7,8,9,-,-,-,25,-,-,-,AvS,-	East Africa, West Asia, South Asia
	PstS2,v1	1,2,-,-,-,6,7,8,9,-,-,-,25,-,-,AvS,-	East Africa
	PstS2,v3	-,2,3,-,-,6,7,8,9,-,-,-,25,-,-,AvS,-	East Africa
	PstS2,v27	-,2,-,-,-,6,7,8,9,-,-,-,25,27,-,-,AvS,-	East Africa, West Asia, North Africa
	Pst2,v1,v27	1,2,-,-,-,6,7,8,9,-,-,-,25,27,-,-,AvS,-	East Africa, West Asia
	PstS2,v3,v27	-,2,3,-,-,6,7,8,9,-,-,-,25,27,-,-,AvS,-	East Africa
	PstS2,v10,v24	-,2,-,-,6,7,8,9,10,-,-,24,25,-,-,-,AvS,-	East Africa, West Asia
	PstS2,v10,v24,v27	-,2,-,-,-,6,7,8,9,10,-,-,24,25,27,-,-,AvS,-	West Asia
	PstS2,v3,v10,v24,v27	-,2,3,-,-,6,7,8,9,10,-,-,24,25,27,-,-,AvS,-	East Africa
PstS3	PstS3	-,(2),-,-,-,6,7,8,-,-,-,-,-,-,-,AvS,-	Europe, North Africa, West Asia
	PstS3,v25	-,(2),-,-,-,6,7,8,-,-,-,-,25,-,-,-,AvS,-	Europe, East Africa
PstS4	Triticale2006	-,2,-,-,-,6,7,8,-,10,-,-,24,-,-,-,-,-	Europe
PstS5	PstS5	1,2,3,4,-,6,-,-,9,-,-,-,25,-,32,-,AvS,Amb	Central Asia
	PstS5,v17	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,32,-,AvS,Amb	Central Asia, South Asia
PstS6	PstS6	1,2,-,-,-,6,7,-,9,-,-,17,-,-,27,-,-,AvS,-	East Africa, Central Asia, South Asia
PstS7	Warrior	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,Amb	Europe
PstS8	Kranich	1,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,-,AvS,Amb	Europe
PstS9	PstS9	1,2,3,4,-,6,-,-,9,-,-,-,25,27,32,-,AvS,Amb	Central Asia, South Asia
	PstS9,v17	1,2,3,4,-,6,-,-,9,-,-,17,-,25,27,32,-,AvS,Amb	Central Asia
PstS10	Warrior(-)	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-	Europe, North Africa
	Kalmar	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-	Europe
	Benchmark	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sp,AvS,-	Europe
PstS11	PstS11	-,2,-,(4),-,6,7,8,-,-,17,-,-,27,32,-,AvS,-	Central and West Asia, East Africa
PstS12	Hereford	-,2,3,-,-,6,7,8,-,-,-,17,-,25,-,32,-,AvS,-	Europe
PstS13	Triticale2015	-,2,-,-,6,7,8,9,-,-,-,-,-,AvS,-	Europe, South America, West Asia
PstS14	PstS14	-,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,(Sp),AvS,-	Europe, North Africa
PstS15	PstS15	1,2,3,-,-,6,7,-,9,-,-,17,-,25,-,32,-,AvS,Amb	Europe

respectively. Kalmar and Benchmark are new races in PstS10, which can only be distinguished by these varieties.

Submission and preparation of samples

Samples of rust infected wheat are submitted based on an import permit issued by GRRC valid for one country and one year, among others confirming compliance with the Nagoya Protocol about control, access and utilization of genetic resources. The details of sampling preparation are available at http://wheatrust.org/submission-of-isolates/, where a video demonstrating ideal sampling procedures is also available. Bilateral agreement with private/public enterprises is also possible. Since 2011, GRRC has accepted samples of both yellow rust, leaf rust and stem rust.

The genotyping of isolates based on DNA extraction from infected leaves (single lesions) was generally successful, following the procedures of Thach et al. 2016. The above procedure for sample recovery and genotyping proved very useful for generating results from all sample submissions irrespectively of recovery results reflecting the quality incoming samples.

Race phenotyping of representative isolates was generally based on several cycles of spore multiplication. In case of signs of multiple genotypes/races within a sample, these were generally sub-cultured for purification according to standard GRRC procedures (Hovmøller et al. 2017), open-access for downloads for non-commercial and educational purposes.

Litterature

- Ali et al., 2017. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages. *Frontiers in Plant Science*, Vol. 8, 1057, 06.2017.
- Carmona, M.A., et al., 2019. Rapid emergency response to yellow rust epidemics caused by newly introduced lineages of *Puccinia striiformis* f.sp. *tritici* in Argentina. Trop. Plant Pathol. 44, 385–39. https://doi. org/10.1007/s40858-019-00295-y
- Hovmøller et al. 2017: Race Typing of *Puccinia striiformis* on Wheat. In: *Wheat Rust Diseases: Methods and Protocols*, ed. S. Periyannan. Springer, p. 29-40. Downloading accepted for non-commercial and educational purposes.
- Patpour et al., 2020. First Report of Race TTRTF of Wheat Stem Rust (Puccinia graminis f. sp. tritici) in Eritrea. Plant Disease 2020 104:3, 973 https://apsjournals.apsnet.org/doi/10.1094/PDIS-10-19-2133-PDN
- Olivera Firpo et al., 2017, Characterization of *Puccinia graminis* f. sp. *tritici* isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol, 66: 1258-1266. doi:10.1111/ppa.12674
- Olivera et al., 2019. Presence of a Sexual Population of Puccinia graminis f. sp. tritici in Georgia Provides a Hotspot for Genotypic and Phenotypic Diversity. Phytopathology™ 109:12, 2152-2160 https://apsjournals.apsnet.org/doi/10.1094/PHYTO-06-19-0186-R
- Sørensen, CK, et al., 2016. Evaluation of spray and point inoculation methods for the phenotyping of *Puccinia striiformis* on wheat. Plant Disease 100:1064-1070. http://apsjournals.apsnet.org/doi/pdfplus/10.1094/PDIS-12-15-1477-RE
- Thach T et al., 2016. Worldwide population structure of the wheat rust fungus *Puccinia striiformis* in the past. *Fungal Genetics and Biology* 87, 1-8. doi.org/10.1016/j.fgb.2015.12.014
- Walter, S. et al., 2016. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecology and Evolution, 6(9), 2790-2804. DOI: 10.1002/ece3.2069

Acknowledgements

Submission of samples of rust infected plant material in 2019 was facilitated by a huge number of collaborators from multiple organisations and countries (Table 8). Sampling in Africa and Asia was coordinated by Dave Hodson (CIMMYT) and sampling in EC-VCU network trials was coordinated by Valérie Cadot (Geves), France. Additional sampling from several areas was based on bilateral agreements, e.g., Jordbruksverket, Sweden (Gunilla Berg), Latvia (Jānis Jaško), IRTA, Spain (Dolors Villegas). Les Szabo provided reference DNA samples of previously defined stem rust genetic groups based on SNP analyses. Handling and recovery of incoming samples and inoculations by Ellen Jørgensen, production of healthy plants by Jakob Sørensen, and SSR genotyping by Janne Holm Hansen, which is greatly acknowledged. The activities were funded by a variety of organisations and research councils: Race typing and genotyping of international (non-European) samples were facilitated by Melinda & Bill Gates Foundation and the UK Department for International Development (DFID). Analyses of European samples was supported by European Union's Horizon 2020 research and innovation programme under grant agreement No 773311 (RustWatch), Jordbruksverket, Sweden, and Latvian Plant Protection Research Centre Ltd.

Citation of this report

Hovmøller MS, Patpour M, Rodriguez-Algaba J, Thach T, Justesen AF and Hansen JG, 2020. GRRC annual report 2019: Stem- and yellow rust genotyping and race analyses. www.wheatrust.org, Aarhus University, Department of Agroecology, DK- 4200 Slagelse, Denmark

Table 8. People submitting	samples of rust infected	leaves/stems of	cereals 2018-2019
Table 0. I copic submitting	Samples of rust infected		CCICAIS 2010-2013.

Afghanistan	Collectors 2018-2019 E Mohmand, A Bari Stanikzai, Z Ahmazada
0	A Noori, A Raqib Lodin; G Ghanizada, Latif Rasekh
Argentina	Agustin Bilbao
u	Agustín Pulido
	Alejandro Porfiri
	Ana Rodriguez
	Ana Storm
	Andrea Rosso
	Buck Semillas
	Carina Cáceres
	Carlos Grosso
	Claudio Bosco
	Cristina Palacios
	Diego Alvarez
	Enrique Alberione
	Fabricio Mock
	Franco Petrelli
	Gustavo Duarte
	Ignacio Erreguerena
	Julián Garcia, Oro Verde
	Liliana Wehrhahne, Adelina Larsen
	Manuela Gordo
	Marcos Mitelsky
	Margarita Sillon
	Marganta Silon Mauro Montarini
	Norma Formento
	Victoria Gonzales, Daniel Ploper
uctric	Michael Oberforster
ustria	
	Thomas Massinger
Belgium	F. De Brouwer; J. Pannecoucque
	G. Jacquemin & R. Meza
Shutan	Dave Hodson, Sangay Tshewang
hile	C. Jobet and R. Galdames
	Carola Vera; Ricardo Madariaga
	Erik Von Baer
zech Republic	Alena Hanzalova
•	Pavel Kraus
enmark	Ghita Cordsen Nielsen
	Jeppe R. Andersen
	Lise Nistrup Jørgensen
	Susanne Sindberg
	Thomas Olsen
aunt	Atef Shahin, Wasief Youssief
gypt	,
	Atef Shahin, Hend, Mohmed, Reda
ritrea	Asmelash Wolday
thiopia	Ashenafi
	Bekele Abeyo; Ayele Badebo
	Dave Hodson
	Zerihun Tadesse
rance	Clément Debiton
	Emmanuel Heumez
	Gorichon
	J.P. Maigniel
	Jérome Auzanneau
	Laurent Pageaud
	Marc Leconte
	Mathieu Grare
	Pascal Giraudeau
	S. Barrais; Vallerie Cadot
ountry	Collectors 2018-2019
ermany	Anja Giebel
·····,	Anne-Kristin Schmitt
	Catherine Cuendet, Getreidezuchtung Peter Kunz
	Cornelia Miersch, SMUL
	· · · · · · · · · · · · · · · · · · ·
	E. Kazman
	Friederike Schiermann
	Henning Hartwig, PZO
	Josef Holzapfel
	Kerstin Flath
	Matthias Haas
	Paul Gruner
	Sommerfeldt, Hoffmann
	Thomas Grafe
	Thomas Zschaeckel
	Uta Liesenberg Uwe Preiss

Country	Collectors 2019 2010
Country	Collectors 2018-2019
Iran	Farzad Afshari
	Mahboobeh Yazdani
	Mansour KarimiJashni, Mohammad Razavi
	Mohsen Yassaie
Italy	Angela Iori, Fabrizio Quaranta, Andreina Belocchi,
	Mauro Fornara
	Anna Maria Mastrangelo
	Antonia Salerno
	Biagio Randazzo
	Daniela Marone
	Emilia Romagna
	Francesca Nocente
	Giovanni Laidò, Rossano Contato
	Giuseppina Goddi
	Luca Fiorilla
	Lucio Salafia
	Oriana Porfiri
	Stefania Stefanelli, Marco Maccaferri
	Virgilio Balmas
Kenya	Ruth Wanyera
Latvia	Līga Feodorova-Fedotova
Morocco	Ezzahiri Brahim
Netherlands	Lubbert van den brink
Norway	Andrea Ficke
	Chloe Grieu
	Morten Lillemo
Pakistan	Sajid Ali
Poland	Ewelina Piwowarczyk
	· · · · · · · · · · · · · · · · · · ·
Duran de	Pawel Czembor
Rwanda	Dave Hodson, Innocent Habarurema
Slovakia	Svetlana Slikova
	Alena Hanzlova
Spain	Carlos Cantero
-	Dolors Villegas
	Enrique Can
	· · ·
	Ibal Elorza
	Jesús Goñi
	Joan Serra
	Luis Urquijo
	Manuel Calvo
	Neus Pulg; Nieves Apa
Sweden	Alexia von Ehrenheim
	Alf Djurberg
	Anders Arvidsson
	Anders Lindgren
	Anna Berlin
	Anna Gerdtsson
	Anna-Karin Krijger
	Charlotte Norén
	Elisabeth Bölenius
	Elisabeth Lövstad
	Erling Christensson
	Eva Mellqvist
	Frans Johnson
	Gunilla Berg
	Gunnel Andersson, Linda af Geijersstam
	Johanna Holmblad
	Jonas Törngren
	Julia Dahlqvist, Anna von Heideken
	Karin Andersson
	Kristian Barck
	Kristian Jochnick
	Lars Johansson
	Lina Norrlund
	Louise Aldén
	Lovisa Eriksson
	Lukas Hallberg
	ŭ
	Robert Dinwiddie
Tanzania	Rose Mongi, Dave Hodson, Ari Uyole
	Salome Munissi, Nafet, Charles, Ramdhani
Tunisia	Marcel Thierry
	Amor Yahyaoui
Turkey	Alex Morgounov
•	
Uganda	Bosco Chemayek
	Owere, Wasukira, Wobibi, Woniala
Ukraine	Vitaliy Paljasniy
Uzbekistan	Zafar Ziyaev

Report of stem and yellow rust genotyping 2019: GRRC, Aarhus University, Denmark www.wheatrust.org